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Chapter 1

Introduction

“God does not play dice”

Albert Einstein, 1926

In 1926, Albert Einstein wrote a letter to Max Born in which be stated "the
theory produces a good deal but hardly brings us closer to secret of the Old One.
I am at all events convinced He does not play dice." A dissent to Born’s proba-
bilistic approach to quantum mechanics, Einstein thought such an incongruence
with classical theory could not be possible. In these notes, I have followed the
Modern Physics Quantum Mechanics Lectures of Leonard Susskind from 2008 at
Stanford [1]. The fundamentally probabilistic and discrete nature of reality is per-
plexing. Herein, I hope to un-confuse myself by systematically presenting quantum
mechanics with mathematical rigor.

1.1 The Double Slit Experiment
Suppose God randomly hits the moon. The slight deviations cause slight changes in
energy, which eventually builds up into statistical randomness in energy; however,
this would violate the conservation of energy in classical physics. In quantum
mechanics, such randomness still conserves energy.

Consider a single slit and a laser that shoots out a photon. If we use a wall
to detect where the photon lands, we’d expect to see a normal distribution, as
illustrated in Figure 1.1.
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Figure 1.1: Single slit experiment.

Now, suppose we add a second slit, as shown in Figure 1.2 such that photons
come through one at a time sparsely. Namely, what happens to the next photon
doesn’t dependent on the current photon in a way that is statistically independent.
If we open both holes, in classical physics, the probability distribution would be
the sum of the two distributions seen when only one slit is open. That is, it
would simply be the sum of the two Gaussian distributions. However, in a real
experiment, we see an interference pattern. There will be places, as shown in the
diagram, where no photons get to despite there being such a long period of time
between the firing of photons. That is, we observe a strange phenomenon, whereby
photons are aware of other photons despite being fired independently.

Figure 1.2: Double slit experiment.
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Next, consider a very simple classical systems where the laws of physics are
specified by the rule H Ñ T Ñ F Ñ H:

H

TF

The reverse law of physics is F Ñ T Ñ H Ñ F :

H

TF

Definition 1 Determinism means if we run the original law of physics for many
steps, i.e. cycles of the triangle, stop it, and let it evolve with the reversed law
backwards for the same time, it will come back to where it started. In particular,
no information is lost, as it is deterministic. However, if there was any randomness
injected in the transition, like in a Markov Chain on a finite state space, it would
destroy the conservation of information.

Consider the one slit experiment again. Suppose we run it forward in time with
the laws of physics and then run it backward by reversing time. Note, we assume
we do not have a screen on which to observe or detect the arrival of photons. In
classical mechanics, we will observe it running backward along the same trajectory
because observing it shouldn’t change the state. However, in quantum mechanics,
if you do anything to detect the photon and then run the law backward, the
probabilistic nature is compounded and the test of reversibility will fail.

Remark 1 Note, the interference pattern seen in Figure 1.2 only holds if nothing
records where the particle goes through. If you record the way the particle went
through, then the interference pattern is destroyed and the probabilities simply add
like in classical physics–this is known as wave function collapse.

1.2 The Uncertainty Principle
There is a fundamental obstruction to observing both position and momentum
simultaneously. From the classical theory of light, we know the energy of a photon
is:

E “ hf “ ~ω (1.1)

where h is Planck’s constant, f is the frequency of light (in units of cycles/sec or
Hertz), ω “ 2πf is the angular frequency and ~ “ h

2π
. Furthermore, Einstein tells

us beams of light have not just energy, but also momentum such that:

E “ cp (1.2)
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where c is the speed of light and p “ mc is momentum. Note, in the non-relativistic
Newtonian setting:

E “
p2

2m

“
1

2
p
p

m

“
1

2
pv.

(1.3)

Re-writing E “ pc, we find:

p “
E

c
“
hf

c
. (1.4)

By wave-particle duality, we can view the photon as a wave moving with the
speed of light. If it has wavelength λ, the wave moves λ meters in one cycle. A
period of the cycle is 1{f , i.e. the time it takes to move distance λ. Thus it takes
t “ 1{f time to go λ distance. Since it’s traveling at the speed of light,

c “
λ

t
“ λf. (1.5)

Thus f “ c{λ so the momentum can be written as:

p “
hf

c
“
h

c

c

λ
“
h

λ
, (1.6)

which is known as de Broglie’s equation. It states that momentum and wave-
length are inverse to each other.

Suppose we want to take a photograph of the electron and wait it to be non-
fuzzy on a scale of ∆x. To form such an image, you have to use wavelengths that
are shorter than ∆x. That is we require: λ ă ∆x. Recall de Broglie’s equation:
p “ h{λ. Thus, if we want ∆x to be small, λ needs to be smaller, which implies p
must be larger.

So if we try to measure an electron, we bombard it with a high momentum
photon, which will knock it off into a random direction. Thus, immediately after we
try to measure it’s position, the electron is kicked hard and the momentum becomes
very uncertain. Measuring position necessarily imparts a random momentum kick
to the particle. That is, there is no such thing as gentle determination in quantum
mechanics.

Remark 2 We have used the fact that light comes in discrete, indivisible photons
(quanta). There is a minimal amount of momenta that is compatible with that
wavelength, namely one photon.

In classical physics, energy does not come in discrete multiples of some basic
unit. In quantum mechanics, the energy of a light wave comes in discrete packets.

Next, suppose we try to measure a particle’s velocity. We use a long wavelength
so as not displace the electron, since as we previously determined, if λ is too small,
it will kick the electron with large momentum. Hence, we observe x˘λ where ˘λ



CHAPTER 1. INTRODUCTION 5

is the uncertainty in position. This will change the velocity by a small amount
and, then, at a later time, we discover the particle at position:

x˘ λ` vt (1.7)

where t is the time between measurements. The distance the particle moves is:

vt˘ λ „ d (1.8)

so v ˘ λ{t „ d{t, where λ{t is the disorder in measurement of velocity. If we wait
long enough, this sloppiness can be made small.

To be more precise, suppose we measure the position of a particle with some
poor accuracy, i.e. within a fuzzy region of radius ∆ as shown in Figure 1.3. Then
suppose we measure the position again after time t. The distance of separation is
L˘∆. It is moving at a velocity of:

L˘∆

t
“
L

t
˘

∆

t
(1.9)

One may think by making t large, you can get an accurate measurement of velocity
and, hence, momentum. However, to measure the first location within ∆ accu-
racy, we will hit the particle with a photon of wavelength λ ă ∆ and momentum
p “ h{λ, which kicks the velocity by ~{∆. Thus, we may think we have a true
measurement of velocity, but it is not.

Figure 1.3: Measure particle within fuzzy region ∆, then measured the location
again after time t.

1.3 State Space
In classical physics, the phase space is the set of points of the system, e.g. tH,T u
representing Heads and Tails in a coin toss. The transition between states in the
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system describe the dynamics. As an example, momentum and position pp, xq can
be thought of as points in a phase space of a set of points. The takeaway is that
states in classical physics are points in a set. However, in quantum mechanics,
states are not sets, but vectors in a vector space.

Definition 2 A vector space V (elements of V are vectors) over a field F (el-
ements of F are called scalars) is equipped with vector addition and scalar multi-
plication and is closed under these operations:

• |ay ` |by “ |cy P V for all |ay , |by P V .

• α |ay “ |by P V for all α P F and |ay P V .

Together, these two properties imply closure under addition and scalar multiplica-
tion, i.e. linear combinations. If |ay , |by P V then α |ay ` β |by P V for all α, β P F.
In quantum mechanics, the state space is a vector space over F “ C.

Consider the collection of complex-valued functions:

F “ tψ : X Ñ C : ψpxq “ Repψqpxq ` Impψqpxqu. (1.10)

We can see that this forms a vector space over over C:

• αψpxq P F for all α P C, ψ P F .

• ψpxq ` φpxq P F for all ψ, φ P F .

Consider another example:

W “

$

’

’

&

’

’

%

»

—

—

–

a1

a2

a3

a4

fi

ffi

ffi

fl

: a1, a2, a3, a4 P C

,

/

/

.

/

/

-

(1.11)

We can see that W is a vector space of dimension 4 over C:

• Addition:

»

—

—

–

a1

a2

a3

a4

fi

ffi

ffi

fl

`

»

—

—

–

b1

b2

b3

b4

fi

ffi

ffi

fl

“

»

—

—

–

a1 ` b1

a2 ` b2

a3 ` b3

a4 ` b4

fi

ffi

ffi

fl

for all ai, bi P C i “ 1, . . . , 4.

• Scalar multiplication:

α

»

—

—

–

a1

a2

a3

a4

fi

ffi

ffi

fl

“

»

—

—

–

αa1

αa2

αa3

αa4

fi

ffi

ffi

fl

for all α P C.
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1.4 Bra and Ket Vectors
First, we recall a complex number z “ x` iy has complex conjugate z˚ “ x´ iy.
One can think of the ket vector |zy as a representation of z and the bra vector xz|
as a representation of z˚. That is, the bra vector is a complex conjugate of the ket
vector.

To be more precise, the ket |vy is a vector in a complex vector space V and
xf | is a linear functional f : V Ñ C in the dual space V ˚. One can think of
interchanging bras and kets as a complex conjugation:

xB|Ay “ xA|By˚ (1.12)

In quantum mechanics, the state is an element of a complex Hilbert space,
i.e. the infinite-dimensional vector space of square-integrable wave functions:

H “
"

|ψy :

ż 8

´8

|ψpxq|2dx ă 8

*

. (1.13)

Definition 3 The minimum number of basis vectors needed to span the vector
space is its dimension.

As an example, one can represent any vector on a line as r |vy where |vy is its
basis vector. As another example,

$

’

’

&

’

’

%

»

—

—

–

1
0
0
0

fi

ffi

ffi

fl

,

»

—

—

–

0
1
0
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
1
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

,

/

/

.

/

/

-

(1.14)

is a basis for a 4-dimensional vector space. As another less intuitive example, the
Hilbert space H “

 

|ψy :
ş8

´8
|ψpxq|2dx ă 8

(

is 8-dimensional.
Remark 3 We can think of a dual space V ˚ of a complex vector space V as the
’complex conjugated’ version of V . Similar to how we can map z Ñ z˚, we can map
bras to keys under isomorphism of a vector space and its dual. As a mnemonic:
if a vector space is a space of complex-valued functions, the dual vector space is
made out of the complex conjugates of the functions. In particular, there exist a
bijective mapping: xA| Ø |Ay.

Remark 4 Suppose we have a finite-dimensional ket vector:

|Ay “

»

—

–

a1
...
an

fi

ffi

fl

, (1.15)

then the bra vector can be identified with it’s complex conjugated transpose:

xA| “
“

a˚1 ¨ ¨ ¨ a˚n
‰

. (1.16)

Similarly, since the complex conjugate of a product is the product of complex
conjugates, there exists another mapping between vector space and dual space
representatives under scalar multiplication and addition:
• α |Ay P V Ø xA|α˚ P V ˚

• |Ay ` |By P V Ø xA| ` xB| P V ˚



CHAPTER 1. INTRODUCTION 8

1.5 Inner Products
The inner product of a ket vector |By with bra vector xA| is:

xA|By (1.17)

such that:

• xA|βBy “ β xA|By

• xA| r|By ` |Cys “ xA|By ` xA|Cy.

• xA|By “ xB|Ay˚ (thought of as pz1z2q
˚ “ z˚2z

˚
1 ).

Notice, the inner product is a linear operator on B. Furthermore, these properties
imply:

xA|Ay “ xA|Ay˚ ùñ xA|Ay is real. (1.18)

We also axiomatically enforce that xA|Ay ą 0 (analogous to z˚z ą 0).

Example 1.5.1 We define an inner product on the vector space of complex-valued
functions as:

xφ|ψy “

ż

dxφ˚pxqψpxq. (1.19)

Example 1.5.2 The k-dimensional space of column vectors with complex entries
V Ď Ck has inner product:

xb|ay “
k
ÿ

i“1

b˚i ai. (1.20)

1.5.1 Bases

We define a D-dimensional orthonormal basis as follows:

• Basis: |byi i “ 1, . . . , D basis vectors.

• Normality: xbi|biy “ 1 unit vectors.

• Orthogonality: xbi|bjy “ 0 for all j ‰ i.

Example 1.5.3 We can form a basis of R4 under the identifications:

|b1y ùñ

»

—

—

–

1
0
0
0

fi

ffi

ffi

fl

, |b2y ùñ

»

—

—

–

0
1
0
0

fi

ffi

ffi

fl

, |b3y ùñ

»

—

—

–

0
0
1
0

fi

ffi

ffi

fl

, |b4y ùñ

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

. (1.21)
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Using Kronecker delta notation, we write the orthonormality property as:

xbi|bjy “ δij. (1.22)

Furthermore, we can write |vy in a basis as:

|vy “
ÿ

i

vi |byi . (1.23)

Notice, we can extract the coefficient vj by taking the inner product with the cor-
responding basis vector bj:

xbj|vy “
ÿ

i

vi xbj|biy

“ vj xbj|bjy

“ vj.

(1.24)

Therefore the basis vector expansion is:

|vy “
ÿ

i

|biy vi “
ÿ

i

|biy xbi|vy . (1.25)



Chapter 2

Observables

2.1 Postulates
A coin is a two-state system described by Heads (H) and Tails (T), forming a
set called the phase space. Now, suppose each state has an associated pointer as
shown in Figure 2.1. Consider a superposition of states:

α |Hy ` ββT. (2.1)

While this doesn’t have an interpretation in classical mechanics, we can entertain
such a state in quantum mechanics. That is, states of a system are vectors and,
what’s more, we can linearly combine them.

Figure 2.1: Two-state coin system.

2.1.1 Postulate: Orthogonality

The first postulate of quantum mechanics is as follows: for states of a system that
are easily distinguished by a simple experiment (e.g. look to see if the state is
heads or tails in this case), the vectors that go along with those two configurations
are orthogonal.

10
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Example 2.1.1 For instance, in the two-state |Hy , |T y system, we have that:

xH|T y “ 0. (2.2)

We also choose:
xH|Hy “ xT |T y “ 1. (2.3)

Thus, |Hy , |T y form a basis.

Example 2.1.2 Consider a die tossed on a table, as shown in Figure 2.2. Here,
|1y , . . . , |6y are basis vectors. They are mutually orthogonal because one can tell
the difference between them in a single experiment. As before, we can consider a
superposition of states:

α1 |1y ` ¨ ¨ ¨ ` α6 |6y , (2.4)

which has no classical analog.

Figure 2.2: Six state die.

2.1.2 Postulate: Unit Length

Consider a confused coin of a two-state system:

|CCy “ αH |Hy ` αT |T y . (2.5)

The probability of heads (resp. tails) is:

pH “ α˚HαH

pT “ α˚TαT
(2.6)

such that
pH ` pT “ 1. (2.7)

This implies that:
α˚HαH ` αTα

˚
T “ 1 “ xCC|CCy . (2.8)

We call αH and αT probability amplitudes. An important property we notice
is pH “ α˚HαH must be positive and real, which aligns with our discussion of inner
products and probability.
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Example 2.1.3 For a confused die:

|CDy “ α1 |1y ` . . . α6 |6y , (2.9)

we require that:
α˚1α1 ` ¨ ¨ ¨ ` α

˚
6α6 “ 1 “ xCD|CDy . (2.10)

Another postulate of quantum mechanics is that all linear superpositions should
themselves be of unit length, which means probabilities sum to 1. That is, for a
finite-dimensional state space, suppose |vy “

ř

i vi |biy. Then xv|vy “ 1.

2.2 Linear Operators

A linear operator L̂ acts on a ket to give another ket:

L̂ |Ay “ |By . (2.11)

It is linear in scalar multiplication and vector addition:

• L̂α |Ay “ αL̂ |Ay

• L̂rxA| ` xB|s “ L̂ xA| ` L̂ xB|.

Examples of linear operators include ration by an angle, multiplying vectors
by a number, and reflection. In quantum mechanics, linear operators correspond
to quantities you can measure, i.e. observables, e.g. the "headness" or "tailness"
of a coin.

2.3 Observables
Measurable quantities (observables) are represented by Hermitian linear opera-
tors. One can act on kets with linear operators to get a ket:

K̂ |Ay “ |Cy . (2.12)

Consider taking the inner product with xB|:

xB| rK̂ |Ays “ xB|K̂|Ay “ K̂AB. (2.13)

This can be thought of as K̂ first acting on |Ay to give K̂ |Ay, followed by an inner
product with xB|. This is a scalar, such that K̂AB can be interpreted as the matrix
element of K̂ between vector B and vector A.

Consider a D-dimensional basis of vectors t|nyu. Then we can enumerate he
matrix for all |my , |ny basis vectors drawn from the same basis:

xm|K̂|ny “ Kmn
»

—

–

K11 ¨ ¨ ¨ K1D
... . . . ...

KD1 ¨ ¨ ¨ KDD

fi

ffi

fl

.
(2.14)
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Let’s expand |Ay in a basis:

|Ay “
ÿ

n

An |ny , (2.15)

where we sum over basis vectors and xm|Ay “ Am. As such, giving the coefficients
Am is a representation of the abstract vector |Ay, i.e. there exists an isomorphism
between the two. Then:

|Ay “
ÿ

n

|ny xn|Ay . (2.16)

(The implicit mnemonic is that |ny xn| does nothing, i.e. it’s an identity.) To find
the components of K̂ |Ay, we compute the n-th component as:

xn|K̂|Ay “
ÿ

m

xn|K̂|my xm|Ay

“
ÿ

m

K̂mnAm
(2.17)

where we use the identity |Ay “
ř

m |my xm|Ay in the first equality. In the second
equality, we can think of matrix K̂ acting on a column vector A.

2.3.1 Composition of Linear Operators

The composition of linear operators is also linear:

K̂L̂ |Ay “ K̂rL̂ |Ays (2.18)

where we interpret the chain as L̂ first acting on A to product L̂ |Ay, which is then
acted on by K̂ to return K̂L̂ |Ay. To find the matrix elements of K̂L̂, we first
apply the identity trick:

L̂ |my “
ÿ

r

|ry xr|L̂|my . (2.19)

It follows that:
xn|K̂L̂|my “

ÿ

r

xn|K̂|ry xr|L̂|my , (2.20)

where K̂nr “ xn|K̂|ry and L̂rm “ xr|L̂|my, such that:

pK̂L̂qnm “
ÿ

r

K̂nrL̂rm (2.21)

is the nm-th matrix element of K̂L̂.



Chapter 3

Postulates of Quantum Mechanics

3.1 Hermitian Operators

A Hermitian operator Ĥ satisfies:

(A)

xB|Ĥ|Ay “ xA|Ĥ|By
˚

(3.1)

(B)

xA|Ĥ|Ay “ xA|Ĥ|Ay
˚
ùñ xA|Ĥ|Ay is real. (3.2)

Notably, property (A) follows (B); thus, we may use (B) as the true definition of
Hermitian. Property (A) is equivalent toHAB “ H˚

BA in components. One can also
think of the complex conjugate in (A) as xA|Ĥ|By

˚
“ xB|˚ Ĥ˚ |Ay˚ “ xB|Ĥ˚|Ay.

Therefore, if Ĥ is Hermitian, we have that:

Hmn “ H˚
nm. (3.3)

3.1.1 Eigenvalues and Eigenvectors

Eigenvectors |λy of an operator Ĥ are vectors whose direction does not change
when one applies Ĥ. More precisely,

Ĥ |λy “ λ |λy (3.4)

where |λy is an eigenvector of Ĥ with eigenvalue λ. Note, if we multiply an
eigenvector by α P C, it still has the sample eigenvalue since:

Ĥpα |λyq “ λpα |λyq, (3.5)

which means we can always multiply eigenvectors to be on unit length.
We present three key theorems related to eigenvectors and eigenvalues of Her-

mitian operators.

Theorem 1 All eigenvalues of a Hermitian operator Ĥ are real.

14
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Theorem 2 The eigenvectors of Ĥ are orthogonal for λ1 ‰ λ2.

Theorem 3 There exists D mutually orthogonal eigenvectors.

Since they are mutually orthogonal, the eigenvectors form a basis for the complex
vector space. Furthermore, all of their eigenvalues are real.

Remark 5 Symmetric operators are the real-analog of Hermitian operators:

ĤAB “ Ĥ˚
BA “ HBA. (3.6)

Remark 6 We can think of Hermitian operators Ĥ as matrices and ket vectors
|Ay as column vectors. Thus, Ĥ |Ay can be simply thought of as matrix-vector
multiplication.

3.2 The Postulates of Quantum Mechanics
(1) Postulate 1 States correspond to collections of ket vectors:

States ùñ t|Ayu (3.7)

E.g. For a coin |Hy , |T y are two mutually orthogonal states for the two-
dimensional system.

(2) Postulate 2 Observables (measured in experiments) correspond to collec-
tions of Hermitian operators:

Observables ùñ tĤu (3.8)

Examples of observables include: momentum, position, the electric field.

(3) Postulate 3 The values of observables are the eigenvalues of Ĥ. In an
experiment, eigenvalues are what we get when we measure an observable Ĥ.

Remark 7 When we measure an observable, e.g. angular momentum, we
get a real number so it’s important that Hermitian operators have real eigen-
values.

(4) Postulate 4 The state for which observable Ĥ is definite (certain)) are the
eigenvectors of Ĥ. E.g. suppose we create an electron in an eigenstate of
an observable such as position. If we measure position, the measurement will
always yield and eigenvalue of the position operator.

Remark 8 The mnemonic is: we observe the observable Ĥ and the result
we get is one of the eigenvalues of the observable.
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Remark 9 Suppose we put an electron in an arbitrary state, i.e. spin along
a particular axis. If we then measure the spin along some other axis, with
a statistical probability, we will get different answers. However, if we if we
measure spin along the axis we prepared it in, we will get a definite answer
(i.e. no statistical uncertainty). Namely, if the system has been prepared
in an eigenstate of a particular variable and we measure that variable, we
always get an eigenvalue.

(5) Postulate 5 Take an arbitrary state of the system |Ay. If we measure the
Ĥ-ness of the electron, then in a basis of eigenvectors |λy1 , . . . , |λyn of Ĥ,
the possible answers we get are λ1, . . . , λn. The probability of measuring λn
if the system has been prepared in state |Ay is:

Ppλnq “ | xλn|Ay |2 “ xA|λny xλn|Ay (3.9)

where xλn|Ay is usually a complex number and measures the component of
|Ay along direction xλn|. Notably, xA|λny xλn|Ay is a product of complex
conjugates and, hence, real.

Example 3.2.1 (Particle on a Line, Position Observable) Consider a par-
ticle on a line. It is described by its wavefunction ψpxq, corresponding to a
vector in a vector space of complex functions (Hilbert space). The inner product
on the Hilbert space is:

xφpxq|ψpxqy “

ż

dxφ˚pxqψpxq (3.10)

Consider the position observable:

X̂ |ψy ùñ xψpxq (3.11)

where " ùñ " means "corresponds to". This is equivalent to:

X̂ |ψpXqy “ |XψpXqy . (3.12)

We confirm the position operator is Hermitian by checking whether xA|Ĥ|Ay is
real, which is a necessary and sufficient condition to be Hermitian.

xψpXq|X̂|ΨpXqy “ xψpXq| rX̂ |ψpXqys

“

ż

ψ˚pxqxψpxqdx

“

ż

ψ˚pxqψpxqxdx,

(3.13)

where we always assume convergence of
ş

ψ˚pxqψpxqdx. Clearly, this is real, since
ψ˚pxqψpxq P R. Thus, X̂ is Hermitian.

The eigenvectors are solutions to:

X̂ |ψpXqy “ λ |ψpXqy (3.14)



CHAPTER 3. POSTULATES OF QUANTUM MECHANICS 17

which is equivalent to:

xψpxq “ λψpxq

px´ λqψpxq “ 0.
(3.15)

Thus, ψpxq “ 0 everywhere but x “ λ. In particular, ψpxq “ δpx ´ λq where δ is
the Dirac-delta function. The Dirac-delta function is defined as non-zero over
a tiny interval ε, as seen in Figure 3.1. That is, δpx ´ λq is an eigenvector of X̂
with eigenvalue λ.

Figure 3.1: Dirac-delta function δpx´ λq.

As shown in Figure 3.2, this is an orthogonal family of functions. Let φpxq “
δpx´ λ1q, ψpxq “ δpx´ λq, then:

ż 8

´8

φ˚pxqψpxqdx “ 0. (3.16)

Notice that we can erect and eigenvector at any λ on the real axis, which means
the spectrum of eigenvalues is the entire real line R.

Figure 3.2: Two orthogonal delta functions δpx´ λq and δpx´ λ1q.

Suppose |λy “ δpx´ λq is an eigenvector. We find:

xλ|ψy “

ż

δpx´ λqψpxqdx

“ ψpλq

ż

rλ´ε,λ`εs

δpx´ λqdx

“ ψpλq

(3.17)
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as
ş

rλ´ε,λ`εs
δpx´ λqdx “ 1, by definition. It follows that xλ|ψy “ ψpλq or

xx|ψy “ ψpxq. (3.18)

That is, the state localized at position x corresponds to the wave function localized
at x where ψpxq is the component of |ψy along basis vector |xy. The probability of
detecting the particle at position x is:

Ppxq “ | xx|ψy |2 “ ψ˚pxqψpxq. (3.19)

Example 3.2.2 (Momentum Observable) Consider the momentum observable
B

Bx
ψpxq, a linear operator acting on the space of functions ψpxq. It turns out this

operator isn’t Hermitian–it’s anti-Hermitian. Recall the definition of a Hermitian
operator.

Definition 4 An operator H is Hermitian if:

xA|H|By “ xB|H|Ay˚ . (3.20)

We can define an anti-Hermitian operator as follows:

Definition 5 An operator H is anti-Hermitian if

xA|H|By “ ´ xB|H|Ay˚ . (3.21)

Remark 10 We note that if H is anti-Hermitian, then ´iH is Hermitian.

Following this remark, we claim that

K̂ |ψpxqy “ ´i
B

Bx
ψpxq (3.22)

is a linear Hermitian operator. It suffices to show

xψ|K̂|ψy “

ż

ψ˚
ˆ

´i
B

Bx
ψpxq

˙

dx

“

ż

ψ˚
ˆ

´i
Bψ

Bx

˙

dx

(3.23)

is real, per property (B) of Section 3.1. We will show it is real by show it is it’s
own complex conjugate. Using integration by parts

ş

fpxqg1pxqdx “ fpxqgpxq ´
ş

f 1pxqgpxqdx and ignoring endpoints
ş

fpxqg1pxqdx “ ´
ş

gpxqf 1pxqdx, we get that:
ż

ψ˚
ˆ

´i
Bψ

Bx

˙

dx “ i

ż

Bψ˚

Bx
ψpxqdx. (3.24)

Taking the complex conjugate of the right hand side (RHS):

´i

ż

ψ˚pxq
Bψ

Bx
dx, (3.25)
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which is just the LHS=RHS˚. This implies that the LHS is real. Thus, ´i B
Bx

is
Hermitian, i.e. K̂ “ ´i B

Bx
is a Hermitian operator.

Consider the eigenvector equation:

´i
Bψpxq

Bx
“ kψpxq (3.26)

with eigenvalue k. The complex exponential eigenfunction ψpxq9eikx “ cospkxq `
i sinpkxq is a solution to this equation. Evidently:

Bψ

Bx
“ ikeikx “ ikψpxq (3.27)

so ´iBψ
Bx
“ kψpxq. That is, ψpxq “ eikx is an eigenvector of K̂ “ i B

Bx
with eigen-

value k.

Remark 11 The probability of finding such a particle in position x is:

|ψpxq|2 “ |eikx|2 “ 1. (3.28)

In other words, there is a uniform probability distribution of finding the particle
anywhere in space, i.e. there is no information about where the particle is.

We can reconcile this wavefunction solution with classical wave theory. Con-
sider the real part of the wave cospkxq. For a wave with wavelength L, kL “ 2π
as cosp2πq “ 0. That is L “ 2π

k
relates the wavelength L to eigenvalue k. From

de Broglie, we know a shorter wavelength L means greater momentum. Under this
interpretation, if we have a wave of particles corresponding to waves of a given
wavelength, these particles have momentum:

p “
h

L

“
h
2π
k

“
h

2π
k

“ ~k

(3.29)

Therefore, the eigenvalue k is the momentum of a particle in units of ~. Hence,
we can write the eigenvector-eigenvalue equation ´iBψpxq

Bx
“ kψpxq as:

´i~
Bψpxq

Bx
“ pψpxq. (3.30)

Remark 12 For X̂, the eigenfunction is δpx ´ λq–a peaked wavefunction. That
is, we know it’s position with certainty. On the other hand, for the momentum
operator ´i B

Bx
, the wave function is spread out all over space. This tradeoff is the

source of the Heisenberg uncertainty principle.

Remark 13 The wave function ψpxq “ eikx can be interpreted as follows. If we
fix k, then ψpxq winds around the unit circle in C. For large k (equivalently small
L), we wind quickly as we move along. Likewise, for small k, we wind slowly.



Chapter 4

Quantization & Heisenberg
Uncertainty

4.1 From Discrete to Continuous: Inner Products
Let N be a discrete random variable with probability mass function ppnq such that
ř

n ppnq “ 1. Recall that basis vectors form an orthonormal basis if:

xm|ny “ δmn. (4.1)

This is really a function of a difference between variables n´m:
#

δpn´mq “ 0, if n´m ‰ 0

δpn´mq “ 1, if n´m “ 0
. (4.2)

For a continuous random variable X, we have a probability density function,
such that

ş

dxppxq “ 1. The probability of finding a particle between x and x`∆x
is:

ż x`∆x

x

ppxqdx “ Ppx, x`∆xq. (4.3)

Recall, the Dirac-delta function is the continuous version of the Kronecker-
delta function. We define a generalized function δpx ´ yq “ 0 if x ‰ y and
ş

δpx ´ yqdx “ 1. That is, the delta-function is an operation that we apply to
functions with a convolution as follows:

ż

δpx´ yqF pxqdx “

ż

δpx´ yqF pyqdx

“ F pyq

ż

δpx´ yqdx

“ F pyq

(4.4)

where in the first equality we used the fact that in a small ε neighborhood of y,
F pxq « F pyq is constant. Hence, rule defining the Dirac-delta function is:

ż

δpx´ yqF pxqdx “ F pyq. (4.5)

20
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We said that |yy, |xy are orthogonal xy, xy “ 0 for |yy ‰ |xy if two configurations
are measurably different. The continuous analog of xm|ny “ δmn is:

xy|xy “ δpx´ yq. (4.6)

Note, xx|xy “ δp0q isn’t defined since it’s infinitely-high; however we don’t end up
using this quantity.

4.2 Rules of Probability in Quantum Mechanics
For discrete spaces, the probability of detecting n for an observable labeled by n
is:

ppnq “ | xn|ψy |2 “ xψ|ny xn|ψy . (4.7)

In continuous space, the probability of finding particle at y given it’s in a state
|ψy is:

ppyq “ | xy|ψy |2 “ xψ|yy xy|ψy (4.8)

Consider the vector space of complex functions ψpxq of x. The inner product
for the vector space of complex functions is:

xφ|ψy “

ż

dxφ˚pxqψpxq. (4.9)

The wave function associated with a particle known to be (localized) at y is φpxq “
δpx´ yq. Hence,

xy|ψy “

ż

dxψpxqδpx´ yq “ ψpyq (4.10)

which is the amplitude of discovering the particle at point y. The probability
density is simply ppyq “ ψ˚pyqψpyq.

4.2.1 Limiting Construction

To go from the discrete to continuous space, we consider a one-dimensional dense
set of discrete points with separation a between all points. Then xm|ny “ δmn in
the discrete setting. We can identify x with n as follows:

|xy “
1
?
a
|ny (4.11)

such that
xx|yy “

δpn´mq

a
“ δpx´ yq, (4.12)

i.e. δpn´mq
a

is a delta function with height 1{a. When a Ñ 0, this approaches
infinite height, i.e. the delta function.
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4.3 Particle on a Circle
Consider a particle on a circle of radius 2πr. We can cut the circle at the bottom
and lay the circle into a line of length 2πr. The circular nature of the line restricts
wave functions ψpxq to be periodic over the diameter of the circle:

ψpxq “ ψpx` 2πrq. (4.13)

This special class of functions is still a vector space as:

• xψpxq “ cψpx` 2πrq

• φpxq ` ψpxq “ φpx` 2πrq ` ψpx` 2πrq.

The position operator X̂ |ψy ùñ xψpxq and the momentum operator P “ ´i~ B

Bx

act on kets |ψy ðñ ψpxq. By |ψy ðñ ψpxq we mean there exists a 1-to-1
correspondence between the ket vector and wave function representation. The
eigenvectors ψppxq “ ei

p
~x satisfy ´i~ B

Bx
ψpxq “ pψpxq with eigenvalue p. We

normalize this solution such that
ş

Circle ψ
˚
p pxqψppxqdx “ 1. Since ψ˚p pxqψppxq “

|ei
p
~x| “ 1, we find:

1 “

ż

Circle
ψ˚p pxqψppxqdx “

ż 2πr

0

1 “ 2πr. (4.14)

Hence, we normalize ψ:

ψppxq “
ei
p
~x

?
2πr

. (4.15)

We note that ψ˚pψq “ 0 because eigenvectors of Hermitian operators with different
eigenvalues are always orthogonal.

Furthermore, we must also guarantee that our solution is periodic:

ei
p
~ px`2πrq

“ ei
p
~x

ei
p
~2πr

“ 1,
(4.16)

which is a restriction on the possible values of eigenvalues p so we are in the
appropriate space of functions. Since e2πni “ 1 for all n P Z, we have that p

~2πr “
2πn or

p “ n
~
r
, (4.17)

i.e. the allowable values of momentum are integer multiples of ~
r
. Thus, although

position is a continuous variable on the circle, momentum is discrete, i.e. quantized.
Note, as r Ñ 8, the spacing ~

r
Ñ 0, so possible momenta become continuous.

Similarly, since angular momentum of a particle on a circle is L “ pr, the spectrum
of angular momentum is:

L “ r
n~
r
“ n~, n P Z, (4.18)
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i.e. angular momentum is also quantized.
As r Ñ 8, the discrete spectrum of momentum (eigenvalues) becomes con-

tinuous and the circle approximates the infinite line. Viewing momentum as a
continuous variable,

xq|py “ δpp´ qq. (4.19)

The takeaway is the quantization of momentum and angular momentum is due to
the periodicity of the wave function.

Remark 14 Recall eigenstates of position look like δpx ´ λq. In contrast, the
eigenstates of momentum take the form ei

p
~x “ cospp~xq ` i sinpp~xq, where each

function is uniformly spread over the circle with |ei
p
~x|2 “ 1. As r Ñ 8, the

wave becomes infinitely spread over the line. As a consequence, no wave function
is simultaneously an eigenvector of position and momentum, unlike in classical
mechanics.

4.4 Compatibility of Observables

Definition 6 The operators Â, B̂ are said to be simultaneously specifiable if
they share eigenvectors. If there is a complete basis of vectors t|nyu simultaneously
eigenvectors of Â and B̂, then both Â and B̂ can be specified and definite, and are
said to be compatible.

Consider operators Â, B̂ with a basis of eigenvectors t|nyu:

Â |ny “ αn |ny

B̂ |ny “ βn |ny
(4.20)

Then

ÂB̂ |ny “ ÂrB̂ |nys

“ Ârβn |nys

“ βnA |ny

“ βnαn |ny .

(4.21)

The order we multiply Â and B̂ does not matter if t|nyu are simultaneously eigen-
vectors of Â, B̂. Thus, the necessary and sufficient conditions that there exists a
basis of vectors that are simultaneous eigenvectors of Â and B̂ is:

ÂB̂ “ B̂Â. (4.22)

We say that Â and B̂ commute if:

rÂ, B̂s :“ ÂB̂ ´ B̂Â “ 0, (4.23)

where rÂ, B̂s is called the commutator.
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4.4.1 Heisenberg Uncertainty: Compatibility of Position and
Momentum

We can see whether position and momentum are compatible by checking their
commutator:

X̂P̂ ´ P̂ X̂ “ X

ˆ

´i~
B

BX

˙

´

ˆ

´i~
B

BX

˙

X, (4.24)

which is an operator acting on functions:

rX̂P̂ ´ P̂ X̂sψpXq “

„

X

ˆ

´i~
B

BX

˙

´

ˆ

´i~
B

BX

˙

X



ψpXq. (4.25)

Recall the order of operators acting on a ket vector: ÂB̂ |ψy “ ÂrB̂ |ψys. Applying
the order of operations to the above equation:

„

X

ˆ

´i~
B

BX

˙

´

ˆ

´i~
B

BX

˙

X



ψpXq “ ´i~X
Bψ

BX
` i~

B

BX
pXψpXqq (4.26)

where
B

BX
pXψpXqq “ ψpXq `X

Bψ

BX
. (4.27)

Substituting, we find that

´i~X
Bψ

BX
` i~

B

BX
pXψpXqq “ ´i~X

Bψ

BX
` i~ψpXq ` i~X

Bψ

BX
“ i~ψpXq.

(4.28)

Therefore,
pX̂P̂ ´ P̂ X̂qψpXq “ i~ψpXq (4.29)

so the commutator is simply:

rX̂, P̂ s “ i~. (4.30)

Therefore, X̂ and P̂ are operators that do not commute and have no common
eigenvectors! The non-commutativity of X̂ and P̂ is known more widely as the
Heisenberg uncertainty principle.

4.4.2 Double Slit Experiment Revisited

Consider a beam of particles described by a wave function with momentum p{~:
ψpxq “ ei

p
~x passing through one slit. Over a small interval, on the screen, we can

approximate the wave by |ψ1y “ ei
p
~y with a probability density ppyq “ |ei

p
~y|2 “ 1.

That is, the probability is uniform and the intensity is just a blob for one hole.
Now consider the double slit experiment, as shown in Figure ?? We add states if
the particles go through the second pinhole. The second wave has slightly different
variation over the same interval, i.e. a slightly different momentum. Hence, the
wave function is:

ψpxq “ ψ1pxq ` ψ2pxq “ ei
p
~y ` ei

q
~y. (4.31)
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Then probability of observing |ψy in position y is:

ψpyqψ˚pyq “ pei
p
~y ` ei

q
~yqpe´i

p
~y ` e´i

q
~yq

“ 1` 1` ei
pp´qq

~ y
` ei

pq´pq
~ y

“ 2` 2 cos
´p´ q

~
y
¯

“ 2
´

1` cos
´p´ q

~
y
¯¯

(4.32)

which oscillates. This probability is always positive and when p´q
~ y “ 2π, the

probability is 0. Hence, if we open only one hole, the probability distribution
of observing a particle in a position is uniform. If we open both holes, we find
a destructive interference pattern, i.e. there are places that the particles simply
cannot go.

Figure 4.1: Double slit.

Note, there will be shorter wavelengths the further you move away from the
vertical location of the slits. If one hole is closed and the other is open, then the
further you depart from the vertical position of that hole, the shown the wave
lengths, the greater the vertical momentum, and the faster the oscillations. The
vertical frequency due to the bottom hole is slightly different than the vertical
frequency due to the top hole because of their difference in height, hence why
p ‰ q. Notice that if p “ q, the probability becomes uniform again. To formalize
this, we can re-write the wave function in terms of a radial distance r and horizontal
distance between the wall the particles emerge from and the screen L, as shown in
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Figure 4.2. In this setting, r “
a

L2 ` y2. Therefore,

ei
p
~ r

r
“
ei
p
~

?
L2`y2

a

L2 ` y2
(4.33)

such that oscillations get faster as y increases. This is the idea of beats in the
probability distribution where there is a shifted wave function and the sum of
them have an oscillation probability that individually neither of them have, as
they individually have uniform probabilities. Since ψψ˚ “ 2

`

1` cospp´q~ yq
˘

if the
two holes are closer together, p « q, it will have shorter wavelength.

Figure 4.2: Reformulation in terms of radial distance r and vertical separation L.

In the one-hole setting, the wave function generally has the form

ei
p
~yρpyq (4.34)

where ei
p
~y are fast oscillations, as p

~ is usually large, and ρpyq is a smooth real
function. Then it has probability:

|ei
p
~yρpyq|2 “ ρpyq2, (4.35)

such that there are no oscillations. When we open a second hole, it will have wave
function:

ei
q
~yρ1pyq (4.36)

so their superposition:
ei
p
~yρpyq ` ei

q
~yρ1pyq (4.37)

gives oscillations or beats.
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Periodic Wavefunctions & Polarizers

5.1 Particle on a Circle
Consider a particle on a circle of diameter 2πr, such that the wave function satisfies:

ψpxq “ ψpx` Lq. (5.1)

Assume the notation ei
p
~x “ eikx. The normalized periodic wave function is:

ψpxq “
eikx
?

2πr
(5.2)

such that
ż

ψ˚pxqψpxqdx “

ż 2πr

0

ˇ

ˇ

ˇ

ˇ

eikx
?

2πr

ˇ

ˇ

ˇ

ˇ

2

dx “
1

2πr

ż 2πr

0

dx “ 1. (5.3)

The periodicity ψpxq “ ψpx ` 2πrq of the wave function implies a constraint
on the eigenvalue of momentum k:

eikx
?

2πr
“

eikx
?

2πr
ei2πrk

1 “ e2πrki

e2πni
“ e2πrki

k “
n

r

(5.4)

for n P Z. That is, momentum is quantized. Notice, the spectrum of possible
values of k are spaced by 1{r. Hence, when r Ñ 8, 1{r Ñ 0, so k is no longer
quantized. That is, momentum is continuous in the limit.

Since wavefunctions are eigenvectors of a Hermitian operator, for different val-
ues of k, they must be orthogonal, by the postulates of quantum mechanics. More

27
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precisely,

1

2πr

ż 2πr

0

eikxe´ik
1xdx “

1

2πr

ż 2πr

0

eipk´k
1qxdx

“

#

0, if k ‰ k1

1, if k ‰ k1

“ δnn1

(5.5)

where n and n1 are integers associated with k and k1 respectively, such that k “ n{r,
k1 “ n1{r. These wave functions form an orthonormal basis for the vector space.

5.1.1 The Identity Operator

The outer product of two vectors xA|By is a complex number. The outer product
|By xA| is a linear operator, represented as a matrix. In particular, it maps ket
vectors to ket vectors:

r|By xA|s |Cy “ |By xA|Cy . (5.6)

It is a linear operator or a dyad.
Observe, we can expand a ket vector in a basis t|nyu as:

|vy “
ÿ

n

vn |ny (5.7)

where vn “ xn|vy are the expansion coefficients. This can be re-written as:

|vy “
ÿ

n

|ny xn|vy

“
ÿ

n

r|ny xn|s |vy

“

˜

ÿ

n

|ny xn|

¸

|vy .

(5.8)

Hence, we define the identity (unit) operator as:

I “
ÿ

n

|ny xn| (5.9)

such that
I |vy “

ÿ

n

|vy xn|vy “ |vy . (5.10)

If we consider the particle on a circle from the previous section, as the circle
becomes large, the momenta form a continuum and we can define its identity
operator as:

I “

ż

dk |ky xk| (5.11)

and likewise for position, which is known to be continuous:

I “

ż

dx |xy xx| . (5.12)
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5.1.2 Probability of Momenta

Let |ψy be the state of a particle on a line with |xy the eigenfunction of the position
operator X̂ with eigenvalue x. Then, xx|ψy “ ψpxq or, equivalently, xx|ky “ eikx?

2π
.

Note, since we are dealing with the continuum limit, r is omitted. We square the
probability amplitudes

ψ̃pkq “ xk|ψy (5.13)

to get the probability of different momenta k. Since I “
ş

dx |xy xx|, we can write
this as:

ψ̃pkq “ xk|ψy

“

ż

xk|xy xx|ψy dx

“

ż
ˆ

eikx
?

2π

˙˚

ψpxqdx

“
1
?

2π

ż

e´ikxψpxqdx,

(5.14)

which is the Fourier Transform of ψpxq. That is,

ψ̃pkq “ Frψpxqs
Ppkq “ |ψ̃pkq|2

(5.15)

where Frψpxqs :“ 1?
2π

ş

e´ikxψpxqdx is the Fourier transform, ψ̃pkq is a momentum
space wave function and ψpxq is a position space wave function. Similarly, we can
go from position to momentum space by using the identity operator I “

ş

dk |ky xk|:

ψpxq “ xx|ψy

“

ż

dk xx|ky xk|ψy

“

ż

eikx
a

2πu
ψ̃pkqdk.

(5.16)

We can write this reciprocal relationship of momentum and position as:

ψ̃pkq “

ż

e´ikx
?

2π
ψpxqdx

ψpxq “

ż

eikx
?

2π
ψ̃pkqdk.

(5.17)

That is, there is an isomorphism between the ψpxq and ψ̃pkq representations
for state |ψy. Recall, the position and momentum operator for ψpxq is defined as:

X̂ψpxq “ xψpxq

K̂ψpxq “ ´i
B

Bx
ψpxq

. (5.18)
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There is an equivalent formalism for the momentum space wave function:

K̂ψ̃pkq “ kψ̃pkq

X̂ψ̃pkq “ i
Bψ̃

Bk
.

(5.19)

A wave packet has a wave function ψpxq that is concentrated in a region with a
smooth shape, as shown in Figure 5.1. By the symmetry arguments in the previous
section, ψ̃pkq also has a nice concentrated wave function.

Figure 5.1: Wave packet.

On the other hand, wave functions that describe particles with fairly precise
momentum and position take the form:

eikxfpxq (5.20)

where the complex exponential oscillates and f is an envelope function, concen-
trated in x, as shown in Figure 5.2. Such a description is as certain as possible in
both position and momentum, saturating the Heisenberg uncertainty principle. In
fact, the center of these wave packets will move like a particle in accordance with
the Schrodinger wave equation.

Figure 5.2: Wave function for particle with fairly precise momentum and position.
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5.2 Polarizers
Light is made of photons. In the wave theory of light, there is an idea of polariza-
tion, which is the direction of the electric field ~E. Namely, we say light is polarized
along the axis of the direction of ~E. In Figure 5.3, the electric field oscillates in
the vertical plane and, hence, is vertically polarized.

Figure 5.3: Electromagnetic wave.

More generally, the direction of the polarization vector is perpendicular to the
direction of motion of a photon, as seen in Figure 5.4.

Figure 5.4: Polarization vector perpendicular to direction of motion of photon.

For instance, if one sent a radio wave in the direction perpendicular to a set
of parallel wires, the wave would come out polarized along the axis perpendicular
to the wires. As in Figure 5.5, current can only oscillate in the vertical direction,
which implies the grid is effectively a mirror in the vertical direction, i.e. it reflects
waves whose ~E field is vertical. When an electromagnetic wave falls on a mirror,
current flows due to the electromagnetic field in any firection. The flow produces
it’s own reflected wave. In this example, the wave with vertically polarized ~E
field will start current in the wires and get reflected since the ~E field cannot drive
current in the horizontal direction. On the other hand, if the ~E field is horizontal,
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it doesn’t start current and passes through. Hence, the field goes through, i.e. the
~E field component that goes through is perpendicular to the direction of the grid.

Figure 5.5: Vertical wire polarizer.

The axis of a polarizer is the direction of transmission. As an example, we can
use a horizontal polarizer to prepare a photon into a state of horizontal polarization
|xy, as per Figure 5.6.

Figure 5.6: Horizontal state of polarization.

Polarizers can prepare a photon in a direction of polarization. We can also use
them to detect polarization. Suppose we use a horizontal polarizer to prepare a
horizontally polarized photon. Then we send it through another polarizer. If it
is a horizontal polarizer, it will come out horizontally polarized with probability
1. However, if it a vertical polarizer, it will get blocked, as shown in Figure 5.7.
Hence, we can record whether or not the photon passes as a form of detection. No
matter how the photon is prepared (i.e. the direction of polarization of the light
wave), it will either be transmitted or reflected–a quantity we can observe.
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Figure 5.7: Detection with a polarizer.

If we polarize the photon at a slightly different angle, as shown in Figure 5.8,
then when we detect horizontal polarization in the second polarizer, the photon
may or may not go through with a certain probability. However, there are only
two possible states–either it goes through or it doesn’t! Indeed, we can rotate the
polarization angle of the preparation polarizer continuously, yet there will only be
two states when we go to detect ; this is the strangeness of quantum mechanics.

Figure 5.8: Two-state system.

In quantum mechanics, there are two orthogonal states of polarization along
the x-axis and y-axis:

|Øy “ |xy “

„

1
0



|Ùy “ |yy “

„

0
1



.

(5.21)

A single experiment can tell you which of these two states the system is in, which
means |xy, |yy must be orthogonal by the postulates. That is, xx|yy “ 0 and we
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normalize the basis vectors xx|xy “ xy|yy “ 1, such that |xy , |yy are an orthonormal
basis for a two-dimensional quantum mechanical system, i.e. a qubit.

5.2.1 Polarizer Observables

The polarization operator P̂‘ for observable polarization in the xy-plane is defined
such that we observe `1 eigenvalue for vertical polarization and ´1 eigenvalue for
horizontal polarization. That is, the eigenvector-eigenvalue definition is:

P̂‘ |xy “ ` |xy
P̂‘ |yy “ ´ |yy

. (5.22)

The matrix representation is:

P̂‘ “
„

1 0
0 ´1



. (5.23)

We can check that it, indeed, satisfies the eigenvector-eigenvalue formulation:

P̂‘ |xy “
„

1 0
0 ´1

 „

1
0



“

„

1
0



“ |xy (5.24)

and
P̂‘ |xy “

„

1 0
0 ´1

 „

0
1



“ ´

„

0
1



“ ´ |yy . (5.25)

Recall from the postulates, eigenvectors are the states of an observable with definite
values, which are the eigenvalues. In this setting, P̂‘ is an observable and |xy, |yy
are the eigenvector states of definite polarization.

5.2.2 Polarizers Along 45˝.

Suppose we orient a polarizer along the 45˝ axis. Again, we can use it to prepare
the photon in a 45˝-axis polarized state. Then, if we use a second 45˝-axis polarizer,
the photon will pass through with probability one. Alternatively, if we use a ´45˝

polarizer, the photon will be reflected or absorbed, i.e. it does not pass through.
If we instead chose a second polarizer along the x-axis, which is halfway between
45˝ and ´45˝, then it is either reflected or transmitted with probability 1{2.

More precisely, when a photon passes through a 45˝ polarizer, it comes out in
a state |xy or |yy with equal probability. Hence the state of the photon is polarized
half way in between and can be written as a superposition:

| Øy “
|xy
?

2
`
|yy
?

2
“

„

1{
?

2
1{
?

2



. (5.26)

Note, if we use a ´45˝ polarizer, then the state vector describing the polar-
ization along the ´45˝ axis is orthogonal to the state vector along the 45˝ axis:

|Ø y “
|xy
?

2
´
|yy
?

2
“

„

1{
?

2
´1{

?
2



, (5.27)
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such that x Ø|
Ø y “ 0.

Suppose we prepare a photon in state | Øy with a 45˝ polarizer. If we sent it
through a second vertical y-axis polarizer (see Figure 5.9), then the probability it
will go through is:

| xy| Øy |
2
“

ˇ

ˇ

ˇ

ˇ

ˇ

C

y

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

|xy
?

2
`
|yy
?

2

˙

G
ˇ

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

“

1 0
‰

„

1{
?

2
1{
?

2


ˇ

ˇ

ˇ

ˇ

2

“
1

2
. (5.28)

Figure 5.9: Thought experiment: 45˝ preparation polarizer, followed by vertical
detection polarizer.

Similarly, the probability it’s polarized along the x-axis after we prepare it in
state | Øy is | |x| Øy |

2 “ 1{2. By the same logic, if photons

| xy|Ø y |2 “

ˇ

ˇ

ˇ

ˇ

ˇ

C

y

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

|xy
?

2
´
|yy
?

2

˙

G
ˇ

ˇ

ˇ

ˇ

ˇ

2

“
1

2
. (5.29)

We can now define a new observable for b polarization along the 45˝ and
´45˝ directions. As before, we will observe `1 and ´1 for 45˝-axis and ´45˝-axis
polarization, respectively. Namely, the eigenvector-eigenvalue equation is:

P̂b | Øy “ ` | Øy
P̂b |Ø y “ ´ |Ø y

. (5.30)

The operator P̂b has matrix representation and satisfies the eigenvector-eigenvalue
formulation as follows:

P̂b “
„

0 1
1 0



P̂b | Øy “
„

0 1
1 0

 „

1{
?

2
1{
?

2



“

„

1{
?

2
1{
?

2



“ | Øy

P̂b |Ø y “
„

0 1
1 0

 „

1{
?

2
´1{

?
2



“ ´

„

1{
?

2
´1{

?
2



“ ´ |Ø y .

(5.31)



CHAPTER 5. PERIODIC WAVEFUNCTIONS & POLARIZERS 36

Remark 15 There is no vector that is simultaneously an eigenvector of P̂‘ and
P̂b, as these two polarizations are incompatible. Recall, an observable is a quantity
you can measure with an apparatus in a single experiment on a system. There-
fore, there is no experiment that can tell one both ‘-axis and b-axis polarization
simultaneously.

Remark 16 If |ψy the state of a system with |xy the eigenvector of the observable,
then the probability of measuring that eigenvalue is

ppxq “ xψ|xy xx|ψy “ ψ˚pxqψpxq. (5.32)

In the case of polarization, xψ|xy xx|ψy is the probability to find x-polarization,
whereas xψ|yy xy|ψy is the probability to find y-polarization. It turns out one can
write the ‘-axis polarization operator as a difference of dyads:

P̂‘ “ |xy xx| ´ |yy xy| . (5.33)

5.3 Polarizers at Arbitrary Angles
Let |θy denote the state of a photon once passed through a θ polarizer. In the |xy,
|yy basis, we can write this state as a linear combination:

|θy “ cos θ |xy ` sin θ |yy “

„

cos θ
sin θ



. (5.34)

The orthogonal state for the photon polarized in θ ` π
2
is |θ ` π

2
y, which can be

similarly expressed in the basis as:

|θ `
π

2
y “ cos

´

θ `
π

2

¯

|xy ` sin
´

θ ´
π

2

¯

|yy

“ ´ sin θ |xy ` cos θ |yy

“

„

´ sin θ
cos θ



.

(5.35)

As defined, |θy and |θ ` π
2
y are, indeed, orthogonal states:

xθ|θ `
π

2
y “

“

cos θ sin θ
‰

„

´ sin θ
cos θ



“ 0 (5.36)

and they are normalized to unity xθ|θy “ xθ ` π
2
|θ ` π

2
y “ 1. Hence, |θy, |θ ` π

2
y is

another basis for the vector space of states.
Suppose we use a θ-axis polarizer to put a photon into state |θy, as per Figure

5.10. The probability it goes through a second horizontal detector polarizer is:

| xx|θy |2 “

ˇ

ˇ

ˇ

ˇ

“

1 0
‰

„

cos θ
sin θ

ˇ

ˇ

ˇ

ˇ

2

“ cos2 θ. (5.37)

Similarly, the probability it passes through a y-polarizer is:

| xy|θy |2 “

ˇ

ˇ

ˇ

ˇ

“

0 1
‰

„

cos θ
sin θ


ˇ

ˇ

ˇ

ˇ

2

“ sin2 θ. (5.38)
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Hence, this obeys the law of total probability: | xx|θy |2`| xy|θy |2 “ cos2 θ`sin2 θ “
1.

Figure 5.10: θ Polarization.

5.3.1 Arbitrary Angle Detection Polarizer

Suppose we polarize a photon with a preparation θ-axis polarizer to state |θy. If
we use a β-axis polarizer as a detector, as shown in Figure 5.11, we would like to
compute the probability it will pass through the polarizer.

Figure 5.11: Setup: θ preparation polarization, followed by β detector polarizer.

The α-polarized photon has state:

|αy “

„

cosα
sinα



. (5.39)

Likewise, a β-polarized state has ket and bra vectors:

|βy “

„

cos β
sin β



, xβ| “
“

cos β sin β
‰

. (5.40)

Hence, to test for β-polarization, we compute the amplitude:

xβ|αy “ cosα cos β ` sinα sin β

“ cospα ´ βq
(5.41)

and the probability of observing β-polarization for a photon in state α:

Ppβq “ | xβ|αy |2 “ cos2
pα ´ βq. (5.42)
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Notice, if β “ α, the probability is 1. As β is rotated away from α, the
probability gets smaller, and when β “ α ` π

2
, the probability is 0.

Consider the following thought experiment, displayed in Figure 5.12. We insert
a horizontal polarizer between a θ and θ`π{2 polarizer. If there was no horizontal
polarizer in the middle, we would expect the photon to not pass through the θ`π{2
polarizer because the first polarizer puts it into state θ. Once prepared into state
|θy by the first θ-polarizer, the probability the photon goes through the horizontal
polarizer is p “ cos2 θ, as previously derived. The probability it goes through the
third polarizer is p “ cos2pα ´ βq “ cos2p0 ´ pθ ` π{2qq “ cos2pθ ` π{2q “ sin2 θ.
Hence, by inserting a horizontal polarizer, the probability it goes through becomes
non-zero!

Figure 5.12: Three polarizer setup.

5.3.2 Observable for polarizer in θ-direction

For polarization in the θ-direction, the observable P̂θ should satisfy:

P̂θ |θy “ ` |θy

P̂θ |θ `
π

2
y “ ´ |θ `

π

2
y

(5.43)

with eigenvectors |θy, |θ ` π
2
y and respective eigenvalues `1, ´1. The matrix

representation of the operator is:

Pθ “
„

cos 2θ sin 2θ
sin 2θ ´ cos 2θ



. (5.44)
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We can check that it satisfies the first eigenvector-eigenvalue equation:

Pθ |θy “
„

cos 2θ sin 2θ
sin 2θ ´ cos 2θ

 „

cos θ
sin θ



“

„

cos2 θ ´ sin2 θ 2 cos θ sin θ
2 sin θ cos θ sin2 θ ´ cos2 θ

 „

cos θ
sin θ



“

„

cos θpcos2 θ ` sin2 θq
2 sin θ cos2 θ ` sin2 sin θ ´ cos2 θ sin θ



“

„

cos θ
sin θ



“ |θy .

(5.45)

Similarly, the observable for the orthogonal θ ` π
2
direction is:

Pθ`π
2
“

„

´ cos 2θ ´ sin 2θ
´ sin 2θ cos 2θ



. (5.46)

5.3.3 Circular Polarization

Left-circular polarization can be represented with a state vector with complex
numbers:

|öy “
1
?

2

„

1
i



“
1
?

2
|xy `

i
?

2
|yy

|œy “
1
?

2

„

1
´i



“
1
?

2
|xy ´

i
?

2
|yy

(5.47)

with inner product:
1
?

2

“

1 ´i˚
‰ 1
?

2

„

1
i



“ 0. (5.48)

Consider a vertically polarized light wave with ~E field:

Ey “ cospz ´ ctq

Ex “ sinpz ´ ctq
(5.49)

which moves down the z-axis with the speed of light. If z “ 0, then:

Ey “ cospctq

Ex “ ´ sinpctq
(5.50)

so the ~E field rotates around in a circle. This is a circularly polarized light wave,
whereby each photon of the light wave is circularly polarized. Suppose we send
a circularly polarized photon through a θ polarizer. The two relevant states are
represented as:

|öy “

„

1{
?

2
i{
?

2



, |θy “

„

cos θ
sin θ



(5.51)
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with amplitude given by:

xθ| öy “
“

cos θ sin θ
‰

„

1{
?

2
i{
?

2



“
cos θ
?

2
` i

sin θ
?

2
. (5.52)

Hence, the probability of the circularly polarized photon being observed in eigen-
state |θy is:

| xθ| öy |2 “
1

2
pcos θ ` i sin θq

1
?

2
pcos θ ` i sin θq˚

“
1

2
pcos θ ` i sin θqpcos θ ´ i sin θq

“
1

2
pcos2 θ ` sin2 θq

“
1

2
.

(5.53)

This means, for a circularly polarized photon, there is a 1{2 probability it goes
through a linear polarizer.

Remark 17 The polarizer observables do not commute for different directions or
types of polarization. For instance, P̂b and P̂‘ have different eigenvectors. Hence,
one cannot simultaneously measure, say, horizontal and 45˝ polarization. On the
other hand, P̂θ and P̂θ`π

2
do commute, so these polarizations can be simultaneously

measured, as expected.



Chapter 6

Expectation & Conservation of
Information

Let K̂ be a observable Hermitian operator, tλnu the collection of eigenvalues of K̂,
and t|nyu the collection of eigenvectors of K̂. The eigenvector-eigenvalue equation
satisfied by this operator is:

K̂ |ny “ λn |ny . (6.1)

We will now investigate xψ|K̂|ψy for |ψy a state of the system. Recall
ř

n |ny xn| “
I. Then we can write this expression as:

xψ|K̂|ψy “
ÿ

n

xψ|K̂|ny xn|ψy

“
ÿ

n

xψ|ny xn|ψyλn

“
ÿ

n

| xψ|ny |2λn

“
ÿ

n

Pnλn,

(6.2)

where in the second equality we used the fact that K̂ |ny “ λn |ny. Notice that
Pn “ | xψ|ny |2 is the probability that if we were to measure K̂, we would get the
n-th eigenvalue λn. In particular, this is the average value of λ:

λ̄ “
ÿ

n

Pnλn. (6.3)

More precisely, the expected value (average) of K̂ observable is:

xK̂y “
ÿ

n

Pnλn “ xψ|K̂|ψy (6.4)

where |ψy is the vector state we have prepared.
As an example, consider the xy-plane polarization observable:

P̂‘ “
„

1 0
0 ´1



(6.5)

41
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and prepared a photon in a θ-polarized state |θy. The average value of the observ-
able is:

xθ|P‘|θy “
“

cos θ sin θ
‰

„

1 0
0 ´1

 „

cos θ
sin θ



“
“

cos θ sin θ
‰

„

cos θ
´ sin θ



“ cos2 θ ´ sin2 θ

“ cos 2θ.

(6.6)

6.1 Expectation of Observables & Phase Shift
In classical mechanics, a state is a point among a set of points, known as the phase
space. The observables are functions that label states. When the state space
becomes continuous, for instance, it is labeled by momenta and positions. Hence,
observable functions include position, momenta, functions of either, or functions
of both.

In quantum mechanics, the state of the system is described by the ket vector
|ψy. The observable K̂ is a Hermitian operator, whereby we compute probabilities
of |ψy assuming distinct eigenvalues when measured. Due to the probabilistic na-
ture of observation, we can calculate the average value of the observable xψ|K̂|ψy.

Suppose we have two states |Ay, |By that are eigenvectors of two different
observables:

K̂ |Ay “ α |Ay

L̂ |By “ β |By .
(6.7)

Suppose we prepare a system with a definite value of the observable K̂, namely α.
The probability that we get β when we measure K̂ is:

| xA|By |2 “ xB|Ay xA|By “ PAB (6.8)

where we normalize the vectors xA|Ay “ xB|By “ 1.
Recall from elementary complex analysis, we can represent a complex number

in polar coordinate form as a complex exponential:

z “ x` iy “ r cos θ ` r sin θ “ reiθ, (6.9)

where r “ |z| is the magnitude of z and θ is its phase. Then multiplying two
complex numbers z1 “ r1e

iθ1 , z2 “ r2e
iθ2 adds phases:

z1z2 “ r1r2e
ipθ1`θ2q. (6.10)

Likewise, taking the complex conjugate simply negates the phase z˚ “ preiθq˚re´iθ.
As a result of this, in quantum mechanics, |Ay and eiθ |Ay are different vectors,

but have identical physical properties. Consider the average value xψ|K̂|ψy of an
observable K̂. Suppose we multiply |ψy by a phase eiθ:

xe´iθψ|K̂|eiθψy “ xψ|K̂|ψy eiθe´iθ

“ xψ|K̂|ψy .
(6.11)
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That is, xK̂y is invariant to phase shift. It turns out probabilities PAB “

xB|Ay xA|By are also unchanged. By complex conjugation, if we multiply a ket
|By to get eiθ |By, a bra xB| becomes e´iθ xB|. Therefore,

PAB “ xB|Ay xA|By

“ xe´iθB|Ay xA|eiθBy

“ xB|Ay xA|By

“ PAB,

(6.12)

so probabilities are also unchanged. Hence, we conclude there is no physical
significance of the phase of a wave function.

6.1.1 Polarization Example

The basis vectors for xy-polarization are:

|xy “

„

1
0



, |yy “

„

0
1



. (6.13)

Per the conclusion in the previous section, multiplying the state by a phase shift
does not change the underlying physical significance, which we denote by ¨

“:

|xy “

„

1
0



¨
“

„

eiθ

0



, |yy “

„

0
´1



¨
“

„

0
´eiθ



. (6.14)

6.1.2 Parameter Constraints for Polarized States

Consider the complex 2-vector
„

α
β



(6.15)

with 2 complex parameters α, β or, equivalently 4 real parameters. We impose
the constraint that the probabilities sum to 1:

α˚α ` β˚β “ 1, (6.16)

which means we have 4 ´ 1 “ 3 parameters left over. We use the additional fact
that multiplying by phase does not change the content of the state. Hence, we can
always multiply by a phase to make the upper entry α be real:

„

a
β



(6.17)

where we require:

a2
` β˚β “ 1

β˚β “ 1´ a2

β “
?

1´ a2eiφ.

(6.18)
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It follows that the most general form for the polarization states of a photon is
a two-parameter family:

„

a
?

1´ a2eiφ



. (6.19)

Consider a polarized electromagnetic wave with ~E field:

Ex “ cospx´ ctq

Ey “ sinpx´ ctq.
(6.20)

When x “ 0, we get Ex “ cospctq, Ey “ ´ sinpctq, so the electric field moves
around a circle. The more general form described by Equation 6.19 described an
electric field that moves around an ellipse. In fact, we can create elliptical polariza-
tion along any axis, where the two parameters are (1) the angle of the major axis,
measured from the horizontal θ and (2) the eccentricity of the ellipse (aspect ratio
of the minor to major diameters). When eccentricity approaches zero, the ellipse
becomes infinitely thin and collapses to a plane, i.e. the ~E field becomes plane-
polarized. When eccentricity approaches 1, the field becomes circularly polarized
so θ doesn’t matter. Hence, it’s not surprising a, φ specify the state, as there is a
one-to-one correspondence between pθ, eccentricityq and pa, φq in this example.

Consider an elliptically polarized photon in state:

|ψy “

„

a
?

1´ a2eiφ



. (6.21)

Let |θy be the state of θ plane polarization:

|θy “

„

cos θ
sin θ



. (6.22)

The probability amplitude the elliptically polarized photon is measured along the
θ plane polarization axis is:

xθ|ψy “ a cos θ `
?

1´ a2e´iφ sin θ, (6.23)

so the probability is simply | xθ|ψy |2. If we fix φ, we can find the major axis by
computing:

θ˚ “ arg max
θ
xθ|ψy xψ|θy . (6.24)

6.2 Evolution in Quantum Mechanics
In classical mechanics, evolution is simply a permutation of the states. The con-
servation property is if two states are different and we evolve time, they remain
different. In quantum mechanics, for two different states |Ay and |By, the notion
of similarity and difference is encoded in the inner product xB|Ay. If two states
are the same, up to phase, we write |Ay 4

“ |By. On the other hand, if they are
different, they must be orthogonal with inner product xB|Ay “ 0. That is, if |Ay
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and |By are similar, xB|Ay is close to 1. Similarly, if |B|Ay “ 1 then |Ay “ |By.
Hence, the inner product is the basic relationship between states.

Suppose the system evolves in time:

|Ay
evolve time
ÝÑ |A1y

|By
evolve time
ÝÑ |B1y

(6.25)

then we insist that relationships between states remain fixed. That is, the con-
servation of information (relationships between states) is:

xB1|A1y “ xB|Ay . (6.26)

The mnemonic is that the angles between vectors in the space of states stays fixed
in time, even if the vectors themselves vary in time.

6.2.1 Hermitian Conjugates and Operators

Let L̂ be a linear operator acting on kets as L̂ |Ay “ |Cy. Using the
ř

n |ny xn| “ I
identity, we can determine its action on bras:

ÿ

n

xB|L̂|ny xn| “ xB| L̂. (6.27)

We can view this as
ÿ

n

xB|L̂|ny xn| “
ÿ

n

xB|rL̂|nys xn| , (6.28)

whereby L̂ |ny produces a ket which gives a complex number when we take its
inner product with xB|, namely xB|rL̂|nys. These are the coefficients in the bra
basis txn|u. Recall, we can extract the BA element of L̂ as follows:

xB|L̂|Ay “ xB|rL̂|Ays, (6.29)

which we can now compute with the bra basis expansion.
While we have established the notion of a linear operator acting from the left

on kets L̂ |Ay “ |Cy, there is an analogous mapping for bra vectors, where a linear
operator L̂: acts from the left:

xA| L̂: “ xC| . (6.30)

Taking its inner product of L̂ |Ay “ |Cy with xB| and xA| L̂: “ xC| with |By yields:

xB|L̂|Ay “ xB|Cy

xA|L̂:|By “ xC|By ,
(6.31)
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which are complex conjugates of each other. Hence, we find the defining identity
for the Hermitian conjugate L̂::

xB|L̂|Ay “ xA|L̂:|By
˚
. (6.32)

The matrix representation specifies the full operator, whose elements can be
written as:

xn|L̂:|my “ L:nm “ xm|L|ny
˚
“ L˚mn. (6.33)

It follows that the matrix elements of the Hermitian conjugate L̂: can be expressed
as:

L:mn “ L˚mn. (6.34)

As an example, if we have the following linear operator matrix representation:

L̂ “

»

–

L11 L12 L13

L21 L22 L23

L31 L32 L33

fi

fl , (6.35)

then the Hermitian conjugate transposes and applies entry-wise complex conjuga-
tion:

L̂: “

»

–

L˚11 L21 L˚31

L˚12 L˚22 L˚32

L˚13 L˚23 L˚33

fi

fl . (6.36)

Remark 18 The Hermitian operator L̂ is a special linear operator that satis-
fies:

L̂ “ L̂: “ pL̂Jq˚. (6.37)
This means Lii “ L˚ii so its diagonal elements Lii must be real. As before, its
off-diagonal elements are reflected about the diagonal and complex conjugated such
that:

L̂ “

»

–

L11 L˚21 L˚31

L˚12 L22 L˚32

L˚13 L23 L˚33

fi

fl , (6.38)

for a 3ˆ 3 example.

Example 6.2.1 The following operators are Hermitian and satisfy P “ P::

P‘ “
„

1 0
0 ´1



Pb “
„

0 1
1 0



Pö “

„

0 ´i
i 0



.

(6.39)

Remark 19 If the expectation xψ|L̂|ψy of L̂ is real for all ψ, it follows that L̂ is
Hermitian.

Remark 20 The eigenvectors of a Hermitian operator span the vector space (state
space), i.e. every Hermitian operator has a complete orthonormal collec-
tion of eigenvectors with real eigenvalues.
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6.2.2 Unitary Operators

Let |Ay, |By be states in a vector space. Their similarity is measured by the inner
product xA|By. Suppose we apply a linear operator U that changes, i.e. evolves,
the states:

U |By “ |B1y

U |Ay “ |A1y
(6.40)

As discussed in the previous section, the same operation has an image among bra
vectors, namely the Hermitian conjugate:

xA|U : “ xA1| . (6.41)

We require that such an evolution under U does not disturb the relationship be-
tween states by enforcing the following condition:

xA|By “ xA1|B1y

“ xA|U :U |By
(6.42)

for any pair |Ay, |By. Therefore,

U :U “ I, U : “ U´1. (6.43)

Definition 7 A unitary operator U satisfies UJU “ I. That is, unitary oper-
ators preserve the inner product between states and, hence, their relationships.

Consequently, as seen in the introduction of Section 6.1, unitary operators preserve
expectations and probabilities.



Chapter 7

Evolution & The Schrödinger
Equation

In classical mechanics, each state is a point in a phase space. The time evolution
of the states must be made by discretizing time because there is no continuous way
to permute states from one configuration to another. The Hamiltonian Hpx, pq
is the energy of system as a function of position and momenta. For instance, one
could define the Hamiltonian as the sum of kinetic and potential energy:

Hpx, pq “
p2

2m
` Upxq. (7.1)

The law of evolution is dictated by the set of flow lines in phase space, as seen in
Figure 7.1. In particular, Hamilton’s equations prescribe the flow:

BH

Bp
“

p

m
“ v “ 9x

BH

Bx
“
BU

Bx
“ ´F pxq “ ´ 9p

(7.2)

where momentum is p “ mv and its derivative is force 9p “ ma “ F . Therefore,
the Hamilton equations are:

BH

Bp
“ 9x

BH

Bx
“ ´ 9p

. (7.3)

48
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Figure 7.1: Flow lines in phase space described by Hamiltonian.

Observables are arbitrary functions of position and momentum F pp, xq. We
will analyze its evolution by computing the first time derivative and substituting
Hamilton’s equations:

d

dt
F pp, xq “

BF

Bp
9p`

BF

Bx
9x

“
BF

Bp

ˆ

´
BH

Bx

˙

`
BF

Bx

BH

Bp

“ ´
BF

Bp

BH

Bx
`
BF

Bx

BH

Bp

:“ tF,Hu

(7.4)

where tF,Hu “ ´BF
Bp
BH
Bx
` BF

Bx
BH
Bp

is the Poisson bracket. Therefore, the Hamilto-
nian determines a flow and if we have an observable quantity F , we can determine
how it changes with time along the flow by Poisson brackets:

d

dt
F pp, xq “ F,H. (7.5)

The Hamiltonian is a generator of time evolution.
In quantum mechanics, the basic rule of time evolution is the relationships

between states does not change with time. Suppose states |Ay, |By evolves over a
period of time T by way of a unitary operator U :

|Ay
T
ÝÑ UpT q |Ay

|By
T
ÝÑ UpT q |By

(7.6)

where U :U “ I. For bra vectors, we effectively complex conjugate the equations,
replacing U with its Hermitian conjugate U ::

xA|
T
ÝÑ xA|UpT q:

xB|
T
ÝÑ xB|UpT q:.

(7.7)
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We would like to analyze how the inner product xB|Ay evolves. We note that
| xB|Ay |2 is the probability of B occurring if we are in state A–similar to a tran-
sition probability in Markov decision processes. The inner product evolves as:

xB|Ay
T
ÝÑ xB|U :U |Ay “ xB|Ay , (7.8)

i.e. it is preserved. Hence, states that are orthogonal stay orthogonal as we evolve
the system.

7.0.1 The Schrödinger Equation Derivation

Let |ψptqy be the state vector at time t. Suppose we evolve by T seconds with the
unitary operator UpT q:

|ψptqy ÝÑ |ψpt` T qy “ UpT q |ψptqy . (7.9)

If T “ 0, |ψptqy “ Up0qψptq so Up0q “ I. Suppose we divide the evolution into
smaller time intervals. The corresponding evolution operator is:

Upεq “ I ´
iε

~
H (7.10)

where ´ iε
~H is a Opεq correction to Up0q “ I. The Hermitian conjugate is thus:

U :pεq “ I `
iε

~
H:. (7.11)

As before, we require that relationships are invariant under time evolution:

U :pεqUpεq “ I
ˆ

I `
iε

~
H:

˙ˆ

I ´
iε

~
H

˙

“ I.
(7.12)

We expand this further, ignoring Opε2q terms since we only care for first order
Opεq terms:

I `
iε

~
pH:

´Hq “ I

iε

~
pH:

´Hq “ 0

H:
“ H.

(7.13)

Hence, for U to be unitary, H must be Hermitian. Since H is Hermitian,
it must be an observable. That is, H has an orthonormal basis of eigenstates,
all of its eigenvalues are real, and it can be measured in a lab. In fact, H is a
Hamiltonian and its eigenvalues are called energy.

Evolving the system ε seconds into the future:

|ψpt` εqy “ Upεq |ψptqy

“

ˆ

I ´
iε

~
H

˙

|ψptqy .
(7.14)
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Taking the difference between states at different times we find:

|ψpt` εqy ´ |ψptqy “ ´
iεH

~
|ψptqy

|ψpt` εqy ´ |ψptqy

ε
“ ´

iH

~
|ψptqy

B |ψy

Bt
´
iH

~
|ψy .

(7.15)

Hence, we know how |ψy changes assuming we know the Hamiltonian, given by:

i~
B |ψy

Bt
“ H |ψy , (7.16)

which is known as the Schrödinger equation.

7.1 Special Material Example
Suppose we have created a material whereby a photon of some wavelength has
energy E1 or E2 depending on which polarization it has. This has a translation
into a statement about the Hamiltonian:

H |xy “ E1 |xy

H |yy “ E2 |yy .
(7.17)

That is, the eigenvalues of H are E1, E2 depending on the corresponding polar-
ization states |xy, |yy. Start with an initial state of photon polarization at time t:

|ψptqy “

„

αptq
βptq



“ αptq |xy ` βptq |yy (7.18)

where αptq and βptq are the amplitudes the photon has x and y polarization,
respectively. Similarly, α˚ptqαptq and β˚ptqβptq are the probabilities the photon
has x and y polarization, respectively. The Schrödinger equation is:

i~
B |ψy

Bt
“ H |ψy

i~
„

9αptq
9βptq



“ H

„

αptq
βptq

 (7.19)

where the Hamiltonian is:
H “

„

E1 0
0 E2



(7.20)

wit E1, E2 eigenvalues since H |xy “ E1 |xy and H |yy “ E2 |yy. Thus, the
Schrödinger equation becomes:

i~
„

9αptq
9βptq



“

„

E1 0
0 E2

 „

α
β



“

„

E1α
E2β



. (7.21)
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Hence, we have a 2ˆ 2 system of ordinary differential equations:

dα

dt
“ ´

iE1

~
αptq

dβ

dt
“ ´

iE2

~
βptq.

(7.22)

Let αp0q “ α, βp0q “ β, then we find αptq “ αe´
iE1
~ t, βptq “ βe´

iE2
~ t are solutions.

Hence, the state of the photon is:

|ψptqy “

«

αe´
iE1
~ t

βe´
iE2
~ t

ff

. (7.23)

The probability the photon is polarized along the x-axis is:

px “ xx|ψptqy xψptq|xy

“

´

αe´
iE1
~ t

¯˚ ´

αe´
iE1
~ t

¯

“ α˚α

(7.24)

and, likewise, the probability it is polarized along the y-axis is py “ β˚β. That is,
the probabilities haven’t changed even after evolving the state in time.

Suppose we run the photon through a b polarizer instead with state:

| Øy “

„

1{
?

2
1{
?

2



. (7.25)

The amplitude the photon will go through a 45˝-axis polarizer is:

x Ø|ψy “
”

1?
2

1?
2

ı

«

αe´
iE1
~ t

βe´
iE2
~ t

ff

“
α
?

2
e´

iE1
~ t
`

β
?

2
e´

iE2
~ t

. (7.26)

The probability it goes through the 45˝ polarizer is | x Ø|ψy |
2.

Suppose we have two 45˝ polarizers with the strange material completely filling
the space between the polarizers. Ordinarily, without the special material, one
would expect the photon to go right through with probability one. Suppose αp0q “
α “ 1{

?
2, βp0q “ β “ 1{

?
2, i.e.

|ψp0qy “

„

αp0q
βp0q



“

„

1{
?

2
1{
?

2



(7.27)

is the state right after coming out of the first 45˝ polarizer. Then the photon
propagates for time t in the special material with different energies depending on
polarization:

|ψptqy “

«

1?
2
e´

iE1
~ t

1?
2
e´

iE2
~ t

ff

. (7.28)
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This corresponds to the experiment shown in Figure 7.2.

Figure 7.2: Special material permeating space between two 45˝ polarizers.

At the second 45˝ polarizer, we would like to know the probability the photon
passes through. That is, the amplitude it is polarized exactly like the first 45˝

polarizer and passes through the second polarizer is:

x Ø|ψptqy “
”

1?
2

1?
2

ı

«

1?
2
e´

iE1
~ t

1?
2
e´

iE2
~ t

ff

“
1

2
e´

iE1
~ t
`

1

2
e´

iE2
~ t

. (7.29)

The probability it passes through the second polarizer is:

p “ | x Ø|ψptqy |
2

“ xψptq| Øy x Ø|ψptqy

“
1

2

´

e´
iE1
~ t
` e´

iE
~ t
¯˚ 1

2

´

e´
iE1
~ t
` e´

iE
~ t
¯

“
1

4

´

e´
iE1
~ t
` e´

iE
~ t
¯´

e
iE1
~ t
` e

iE
~ t
¯

“
1

4

´

2` e
ipE2´E1q

~ t
` e´

ipE2´E1q
~ t

¯

, (7.30)

where E2 ´ E1 is the energy difference of the two polarization states. That is
the probability the photon passes through the second polarizer only depends on
energy differences, which is a deep idea in physics. Let ∆E “ E2 ´ E1, then the
probability is:

p “
1

4

´

2` e
i∆E
~ t
` e´

i∆E
~ t

¯

“
1

2
`

1

2

cos ∆E

~
t

. (7.31)

At t “ 0, the probability to get through the second polarizer is p “ 1 because
the system has not been given time to evolve so it is still 45˝-polarized. Hence, the
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probability a ´45˝-polarized photon passes is zero. At a time t such that ∆E
~ t “ π,

a ´45˝-polarized photon passes with probability 1, whereas a 45˝-polarized photon
does not since p “ 0. Hence, in some sense, there is a continuous rotation of the
angle of polarization.

Remark 21 Note, if ∆E “ 0, then p “ 1. Hence, if the two energies are the
same, the system will behave as if no material was there at all. If one adds a
constant number to the energies E1, E2 which satisfy the eigenvector-eigenvalue
equations H |xy “ E1 |xy, H |yy “ E2 |yy, there is no effect on what is measured.
That is, only energy differences are important!

7.2 Evolution of the Average Observable

Suppose we have an observable K̂ operator. The average value in state ψ is
xKy “ xψ|K̂|ψy. Since K̂ is fixed, the only component of this that changes with
time is the state |ψy. We apply the product rule to compute its time derivative:

d

dt
xψ|K̂|ψy “ xψ|K̂| 9ψy ` x 9ψ|K̂|ψy . (7.32)

Notice, in the product rule, we decomposed the average as first the linear oper-
ator acting on a ket followed by an inner product with a bra vector: xψ|K̂|ψy “
xψ|rK̂|ψys. The Schrödinger equation

| 9ψy “ ´
iH

~
|ψy (7.33)

has the corresponding formulation for a bra vector:

x 9ψ| “

ˆ

´
iH

~
|ψy

˙:

“
i

~
xψ|H:

“
i

~
xψ|H.

(7.34)

Returning to the derivative calculation, we find:

d

dt
xψ|K̂|ψy “ xψ|K̂| 9ψy ` x 9ψ|K̂|ψy

“

B

ψ

ˇ

ˇ

ˇ

ˇ

K̂

ˆ

´i

~
H

˙ ˇ

ˇ

ˇ

ˇ

ψ

F

`

B

i

~
ψ

ˇ

ˇ

ˇ

ˇ

HK̂

ˇ

ˇ

ˇ

ˇ

ψ

F

“ ´
i

~
xψ|K̂H|ψy `

i

~
xψ|HK̂|ψy

“ ´
i

~
xψ|K̂H ´HK̂|ψy

“ ´
i

~
xψ|rK̂,Hs|ψy

“ ´
i

~
xrK̂,Hsy ,

(7.35)
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where rK,Hs “ K̂H ´HK̂.

Theorem 4 The evolution of the average value of an observable is given by the
Hamiltonian H:

d

dt
xψ|K̂|ψy “ ´

i

~
xψ|rK̂,Hs|ψy (7.36)

or, equivalently:
d

dt
xK̂y “ ´

i

~
xrK̂,Hsy . (7.37)

If the observable commutes with the Hamiltonian, then d
dt
xK̂y “ 0, which is a

weak conservation of energy law. That is, the expectation value of the quantity K̂
does not change if K̂ commutes with the Hamiltonian.

Remark 22 In the special case where K̂ “ H, d
dt
xHy “ 0, i.e. the Hamiltonian

is a conserved quantity.

Remark 23 Our evolution law is analogous to classical mechanics, where one
defines a Poisson bracket:

tA,Bu “
BA

Bx

BB

Bp
´
BA

Bp

BB

Bx
. (7.38)

It follows that tH,Hu “ 0 for the Hamiltonian H, so energy is conserved. Like-
wise, if tA,Hu “ 0 for a quantity A, then A is conserved.

7.3 Particle on a Line
Consider a particle on a line described by its wave function ψpx, tq, which encodes
information about the probability of being in position x at time t. We would like
to study the evolution Bψpx,tq

Bt
. The wave function ψpx, tq can be thought of as a

representation of the state vector |ψpx, tqy in Hilbert space. Recall, the Schrödinger
equation is:

i~
Bψpx, tq

Bt
“ Hψpx, tq. (7.39)

Classically, we know a particle on a line has Hamiltonian (energy:

E “ H “
p2

2m
. (7.40)

In quantum mechanics, the momentum becomes the operator P̂ “ ´i~ B

Bx
.

Therefore,

i~
Bψpx, tq

Bt
“ Hψpx, tq “

P̂ 2

2m
ψpx, tq (7.41)

where P̂ 2ψ “ ´i~ B

Bx

`

´i~Bψ
Bx

˘

“ ´~2 B2ψ
Bx2 . It follows that

Bψ

Bt
“ i

~
2m

B2ψ

Bx2
, (7.42)
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which is the Schrödinger wave equation for a free particle on a line with no forces
on it.

Remark 24 The momentum operator P̂ is Hermitian, so P̂ 2 is Hermitian and,
thus, so is the Hamiltonian H.

The eigenvectors of the momentum operator are wave functions with definite
momentum ei

p
~x. Suppose we makke an ansatz for the time-dependent solution of

the Schrödinger wave equation for a free particle on a line:

ψpx, tq “ fptqei
p
~x. (7.43)

This is still an eigenvector of momentum since P̂ only differentiates with respect
to position. Computing the first time derivative:

9ψ “ 9ei
p
~x, (7.44)

we plug the ansatz into the Schrödinger equation:

i
~

2m

B2ψ

Bx2
“ i

~
2m

fptq

ˆ

ip

~

˙2

ei
p
~x

9fei
p
~x “ i

~
2m

fptq

ˆ

ip

~

˙2

ei
p
~x

9f “ ´
i

2m~
p2fptq

fptq “ e´
i
~
p2

2m
t.

(7.45)

Therefore, the time-dependent solution of the Schrödinger wave equation cor-
responding to a momentum eigenstate is:

ψpx, tq “ ei
p
~x´i

p2

2m~ t. (7.46)



Chapter 8

General Solutions to The
Schrödinger Equation

The general Schrödinger equation is:

i~
B |ψy

Bt
“ Ĥ |ψy . (8.1)

In classical mechanics, a particle moving along a line has Hamiltonian H “
p2

2m
.

In quantum mechanics, we write the Hamiltonian as:

Ĥ “
P̂ 2

2m
(8.2)

where the momentum operator is P̂ “ ´~ B

Bx
. As in the previous chapter, we

identify the wave function representation ψpx, tq with the state |ψy. Hence, the
Schrödinger wave equation becomes:

i~
Bψpx, tq

Bt
“

1

2m

ˆ

´i~
B

Bx

˙ˆ

´i~
B

Bx

˙

ψpx, tq “ ´
~2

2m

B2ψpx, tq

Bx2
. (8.3)

We make an ansatz that ψpx, tq is separable in space and time dependence:

ψpx, tq “ ei
p
~xeiωt (8.4)

where, recall, the eigenvectors of P̂ have the form |P y “ ei
p
~x in wave function

form. We compute the time derivative of the ansatz:

Bψ

Bt
“ iωψpx, tq. (8.5)

Likewise, we compute the second order space derivative:

Bψ

Bx
“ i

p

~
ψpx, tq

B2ψ

Bx2
“

´

i
p

~

¯2

ψpx, tq.

(8.6)

57
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Hence, the Schrödinger wave equation simplifies to:

i~
Bψ

Bt
“ ´ω~ψpx, tq

“ ´
~2

2m

B2ψ

Bx2

“ ´
~2

2m

´

i
p

~

¯2

ψ

“
p2

2m
ψpx, tq.

(8.7)

Solving for ω, we find:

ω “ ´
p2

2m~
(8.8)

such that
ψpx, tq “ ei

p
~x´i

p2

2m~ t. (8.9)

Note, this is the wave function for a positive momentum. The negative p solution
is given by:

ψpx, tq “ e´i
p
~x´i

p2

2m~ t. (8.10)

This will have a different direction for momenta, but the same energy p2

2m
as the

positive p solution. Hence, we can combine solutions in a superposition:

ψpx, tq “ αei
p
~x´i

p2

2m~ t ` βe´i
p
~x´i

p2

2m~ t. (8.11)

The probability the particle is moving to the left (negative p) and right (positive
p) is α˚α and β˚β, respectively. The probability it has energy p2

2m
, however, is one.

The general solution of Schrödinger’s equation is the integral of these solutions
over all possible momenta p:

ψpx, tq “

ż 8

´8

dp
?

2π

„

ei
p
~x´i

p2

2m~ tψ̃ppq



, (8.12)

i.e. a quantum superposition of states with different momenta and, consequently,
energies, where ψ̃ is the Fourier transform. The probability density that a particle
has momentum q is:

ppqq “ ψ̃˚pqqψ̃pqq. (8.13)

We are also interested in the probability the energy is E. Recall E “
p2

2m
so

p2 “ 2mE. Hence, there are two possible momenta corresponding to E:

p˘ “ ˘
?

2mE, (8.14)

so, by the law of total probability we add the respective probabilities corresponding
to p` and p´:

ppEq “ ψ̃˚pp`qψ̃pp`q ` ψ̃
˚
pp´qψ̃pp´q. (8.15)
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Remark 25 When t “ 0:
ż 8

´8

dp
?

2π
eipxψ̃ppq “ ψpx, 0q :“ ψpxq (8.16)

, which is the definition of the Fourier transform of ψpxq. Indeed, we can recon-
struct ψ̃ppq from ψpx, 0q “ ψpxq as:

ψ̃ppq “

ż 8

´8

dx
?

2π
e´ipxψpxq (8.17)

which we can substitute into the general solution:

ψpx, tq “

ż 8

´8

dp
?

2π

„

ei
p
~x´i

p2

2m~ tψ̃ppq



. (8.18)

In this setting,
ψ̃pp, tq “ e´i

p2

2m~ tψ̃ppq (8.19)

is a Fourier transform that evolves with time.

8.1 Time Evolution of Expectation

As per Theorem 4, for a fixed observable K̂, the time evolution of the expectation
value xψ|K̂|ψy is given by the Hamiltonian. In particular, the Schrödinger equation
gives:

| 9ψy “ ´
i

~
H |ψy , x 9ψ| “

i

~
xψ|H (8.20)

which we use when computing the derivative of the expected value of K̂ in state
|ψy:

d

dt
xψ|K̂|ψy “ x 9ψ|K̂|ψy ` xψ|K̂| 9ψy

“
i

~
xψ|HK̂|ψy ´

i

~
xψ|K̂H|ψy

“
i

~
xψ|HK̂ ´ K̂H|ψy

“
i

~
xrH, K̂sy .

(8.21)

That is,
d

dt
xK̂y “

i

~
xrH, K̂sy . (8.22)

Remark 26 In classical mechanics, there is an analogous equation with Poisson
brackets. Consider the observable function Kpx, pq. Then,

d

dt
Kpx, pq “

BK

Bx
9x`

BK

Bp
9p. (8.23)
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We substitute Hamilton’s equations

9x “
BH

Bp
, 9p “ ´

BH

Bx
(8.24)

to find:
d

dt
Kpx, pq “

BK

Bx

BH

Bp
´
BK

Bp

BH

Bx
“ tK,Hu. (8.25)

Notice, we do not take expectations because classical mechanics is deterministic,
unlike quantum mechanics.

8.2 Poisson Brackets and Commutators
In classical mechanics, we have the following Poisson bracket identity:

tF pxq, pu “
BF

Bx

Bp

Bp
´
BF

Bp

Bp

Bx
“
BF

Bx
. (8.26)

To make a connection with commutators in quantum mechanics, consider the
commutator of operator F pxq (producing a ket when applied to a ket) with P :

„

F pxq,´i~
B

Bx



“ F pxq

ˆ

´i~
B

Bx

˙

´

ˆ

i~
B

Bx

˙

F pxq. (8.27)

We apply this operator to a state vector |ψpxqy using its wave representation:
„

F pxq,´i~
B

Bx



ψpxq “

„

F pxq

ˆ

´i~
B

Bx

˙

´

ˆ

i~
B

Bx

˙

F pxq



ψpxq

“ ´i~F pxq
Bψ

Bx
` i~

„

F pxq
Bψ

Bx
`
BF

Bx
ψpxq



“ i~
BF

Bx
ψpxq,

(8.28)

where we invoked the product rule in line two. It follows that

rF pxq, P s “ i~
BF

Bx
. (8.29)

When F pxq “ x, we recover the Heisenberg uncertainty principle:

rX,P s “ i~
Bx

Bx
“ i~. (8.30)

Through similar derivation, one finds:

rX,F ppqs “ i~
BF

Bp
. (8.31)

Again, it recovers the Heinsenberg uncertainty principle when we set F ppq “ p:

rX,P s “ i~
Bp

Bp
“ i~. (8.32)
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Remark 27 In classical mechanics, tF pxq, pu “ BF
Bx
. Setting F pxq “ x, we find

tX,P u “ 1.

Remark 28 Poisson brackets and commutators seem to be the same, except for a
i~ factor:

i~tX,P u “ rX,P s. (8.33)

8.3 Properties of Poisson Brackets and Commuta-
tors

Poisson brackets are antisymmetric:

tA,Bu “ ´tB,Au. (8.34)

Similarly, commutators are antisymmetric:

rA,Bs “ AB ´BA “ ´pBA´ ABq “ ´rB,As. (8.35)

Consider the following Poisson bracket:

tAB,Cu “
BAB

Bx

BC

Bp
´
BAB

Bp

BC

Bx
(8.36)

where
BAB

Bx
“ ABxB `BBxA

BAB

Bp
“ ABpB `BBpA.

(8.37)

Thus, we simplify the bracket as:

tAB,Cu “ pABxB `BBxAqBpC ´ pABpB `BBpAqBxC

“ ApBxBBpC ´ BpBBxCq ` pBxABpC ´ BpABxCqB

“ AtB,Cu ` tA,CuB

(8.38)

so
tAB,Cu “ AtB,Cu ` tA,CuB. (8.39)

We check that the same property holds for commutators:

rAB,Cs
?
“ ArB,Cs ` rA,CsB

ABC ´ CAB
?
“ ApBC ´ CBq ` pAC ´ CAqB

“ ABC ´ ACB ` ACB ´ CAB

“ ABC ´ CAB.

(8.40)

Hence, we have confirmed commutators also obey the identity:

rAB,Cs “ ArB,Cs ` rA,CsB. (8.41)

That is, commutators are the natural analog of Poisson brackets in quantum me-
chanics.
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8.4 Schrödinger Equation for Particle in Potential
The Schrödinger wave equation for a particle is:

i
Bψpx, tq

Bt
“ Hψpx, tq. (8.42)

If the particle is subject to an external potential, then the Hamiltonian is

H “
p2

2m
` Upxq (8.43)

so the Schrödinger wave equation becomes:

i~
Bψ

Bt
“ ´

~2

2m

B2ψ

Bx2
` Upxqψpxq. (8.44)

We want to study how the center of this wave function moves. Indeed, it turns out
that if the potential is smooth–that is, it varies smoothly on the scale of oscillations
of the wave function, then the center moves according to classical phyiscs. To be
more precise, we characterize the time-evolution of the average position observable:

d

dt
xXy “

i

~
xrH,Xsy “

i

~

B„

P 2

2m
` UpXq, X

F

. (8.45)

Since rUpXq, Xs “ 0 (to see an example of this, take UpXq “ X2), we find that:

d

dt
xXy “

i

~

B„

P 2

2m
,X

F

“
i

2m~
xrP 2, Xsy . (8.46)

We apply the commutator identity rAB,Cs “ ArB,Cs´ rA,CsB and and Heisen-
berg uncertainty principle rP,Xs “ ´i~ to show:

rP 2, Xs “ P rP,Xs ` rP,XsP “ ´2i~P. (8.47)

Consequently,

d

dt
xXy “

i

2m~
x´2i~P y

“
xP y

m
,

(8.48)

or, equivalently:
d

dt
xXy “

B

P

m

F

, (8.49)

which is the average velocity.

Remark 29 This is not surprising since p{m “ v classically.
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We are also interested in the time evolution of the average momentum observ-
able d

dt
xP y. We use the fact that rP 2, P s “ 0 to simplify it as follows:

d

dt
xP y “

i

~
xrH,P sy

“
i

~

B„

P 2

2m
` UpXq, P

F

“
i

~
xrUpXq, P sy .

(8.50)

Next, invoking the identity rF pXq, P s “ i~BF
Bx
, we find:

rUpXq, P s “ i~
BU

Bx
. (8.51)

Substituting this quantity into Equation 8.50, the derivative of average momentum
is:

d

dt
xP y “

i

~

B

i~
BU

BX

F

“ ´

B

BU

BX

F

. (8.52)

Remark 30 This is the analog of Newton’s F “ ma since F “ ´BU
Bx

and if p “ mv
then d

dt
p “ ma “ F classically. In quantum mechanics, one can only obtain these

rules in expectation, as the laws are fundamentally probabilistic.



Chapter 9

The Quantum Harmonic Oscillator

9.1 The Classical Harmonic Oscillator
Consider a spring harmonic oscillator, subject to gravitation, in an equilibrium
state as shown in Figure 9.1. If you pull and release the spring, it will exhibit
simple harmonic oscillation.

Figure 9.1: Simple harmonic oscillator.

Let x denote the displacement from its equilibrium position. The kinetic energy
is

1

2
m 9x2. (9.1)

Let y “
?
mx be a transformation of the coordinate system such that:

9y2
“ m 9x2. (9.2)

Then the kinetic energy can be simply written as 1
2

9x2 in the transformed coor-
dinates. Let k “ ω2 be the spring constant. In this system, potential energy is

64
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proportional to displacement squared. Hence, the Lagrangian, which is the differ-
ence of kinetic and potential energy, can be written as:

L “ 1

2
9x2
´

1

2
kx2

“
1

2
9x2
´
ω

2
x2. (9.3)

The canonical momentum conjugate to x is:
BL
B 9x
“ 9x. (9.4)

The Euler-Lagrange equations of motion are
d

dt

BL
B 9x
´
BL
Bx
“ 0. (9.5)

Plugging in the canonical momentum conjugate to x:
d

dt

BL
B 9x
“ :x

“
BL
Bx

“ ´ω2x.

(9.6)

or, succinctly:
:x “ ´ω2x (9.7)

This is precisely Hooke’s law, which states that F “ ´kx for spring constant
k “ ω2. That is, F is a restoring force that pulls upwards if you displace the
spring downwards. The classical solution to this ordinary differential equation is:

x “ a cospωtq ` b sinpωtq. (9.8)

9.2 Quantum Harmonic Oscillator
Let ψpxq be the wave function representation for a particle moving on a line. Then
ψ˚pxqψpxq “ ppxq is the probability density for finding the particle at position x.
As discussed in the previous section, the canonical momentum conjugate to x for
the harmonic oscillator is

P̂ “
BL
B 9X

“ 9X. (9.9)

Recall, the Lagrangian and Hamiltonian can be expressed in terms of kinetic and
potential energy as:

L “ KE´ PE
H “ KE` PE.

(9.10)

Hence, the sum of kinetic energy 1
2

9x2 and potential energy 1
2
ω2x2 yields the Hamil-

tonian operator:

H “ P̂
9̂
X ´ L

“
1

2

9̂
X2
`

1

2
ω2 9̂
X2

“
1

2
P̂ 2
`

1

2
ω2X̂2.

(9.11)
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We can treat P̂ and X̂ as observables acting on the state vector ψpxq. That is,
we identify the actions of X̂, P̂ and H as follows:

X̂ |ψpxqy
corresponds to
ÝÑ xψpxq

P̂ |ψpxqy
corresponds to
ÝÑ ´i

B

Bx
ψpxq

H |ψy
corresponds to
ÝÑ

1

2

ˆ

´i
B

Bx

˙ˆ

´i
Bψ

Bx

˙

`
1

2
ω2x2ψpxq

(9.12)

where 1
2

`

´i B
Bx

˘ `

´iBψ
Bx

˘

` 1
2
ω2x2ψpxq “ ´1

2
B2ψ
Bx
` 1

2
ω2x2ψpxq. That is, we have the

correspondence:

H |ψy ÝÑ ´
1

2

B2ψ

Bx2
`

1

2
ω2x2ψpxq (9.13)

Hence, the Schrödinger equation for a quantum harmonic oscillator is:

i~
Bψ

Bt
“ Hψ “ ´

1

2

B2ψ

Bx2
`

1

2
ω2x2ψpxq. (9.14)

9.2.1 Calculating Energy Eigenvector and Eigenvalues

Consider the eigenvectors |ψEy and eigenvalues E of the Hamiltonian, satisfying:

H |ψEy “ E |ψEy . (9.15)

Substituting this into the Schrödinger equation, we find:

´
1

2

B2ψEpxq

Bx2
`

1

2
ω2x2ψEpxq “ EψEpxq. (9.16)

This is a second-order differential equation so it will have two independent solutions
for ψEpxq. In this case, each solution is an exponential eξx2 , e´ξx2 .

Remark 31 The solution ψEpxq “ eξx
2 will exponentially increase as x Ñ 8,

which implies the probability density exponentially increases. Hence, the relative
probability of being anywhere versus near 8 is 0. Since the Hamiltonian (energy)
contains X2, if the probability density is concentrated overwhelmingly far away,
it means the energy is enormous. Hence, the probability of finding the particle
anywhere other than 8 is zero. This solution is degenerate.

Indeed, we must enforce the true space of states belongs to the state space of
square integrable functions. That is, we require:

ż

ψ˚pxqψpxqdx “ 1 (9.17)

to preclude functions that exponentially blow up far away.
Notice, the non-commutativity of X and P due to the Heisenberg uncertainty

principle implies

H “
1

2
P 2
`

1

2
ω2X2 (9.18)
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is positive. Classically, to minimize energy, we set P “ 0 and X “ 0. However,
this is not possible in quantum mechanics because one has to find a compromise
between P and X. Thus, due to the uncertainty principle, the lowest ground
state energy of a system will not be zero.

9.2.2 Ground State Solution

Consider the following ansatz for an oscillator concentrated near the origin (setting
~=1):

ψpxq “ e´
ωx2

2 (9.19)

as a solution to
´

1

2

B2ψEpxq

Bx2
`

1

2
ω2x2ψEpxq “ EψEpxq. (9.20)

We compute the first-order space derivative:

Bψ

Bx
“ p´ωxqψpxq (9.21)

and the second-order space derivative:

B2ψ

Bx2
“ ´ω

„

ψpxq ` x
Bψ

Bx



“ ´ωψpxq ´ ωxp´ωxψpxqq

“ ´ωψpxq ` ω2x2ψpxq.

(9.22)

Substituting these derivatives into Equation 9.20, we find:

ω

2
ψpxq ´

ω2

2
x2ψpxq `

1

2
ω2x2ψpxq “ EψEpxq

ω

2
“ E.

(9.23)

Hence, the eigenvector is ψpxq “ e´
ω
2
x2 with eigenvalue E “ ω~{2 (when we re-

introduce ~). Since ~ is very small, the energy ground state is very small. The
conventional notation to denote a ground state solution is:

ψ0pxq “ e´
ω
2
x2

. (9.24)

9.2.3 Other Energy Levels

We are interested in the solutions for other energy levels. Recall the quantum
mechanical (and classical) Hamiltonian is:

H “
1

2
pP 2

` ω2X2
q. (9.25)
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We could try to use the property that a2 ` b2 “ pa ` ibqpa ´ ibq to re-write the
Hamiltonian. However, it turns out that this does not work due to the non-
commutativity of P and X. That is, consider the following:

1

2
pP ` iωXqpP ´ iωXq “

1

2
pP 2

` ω2X2
` iωXP ´ iωPXq

“
1

2
pP 2

` ω2X2
` iωpXP ´ PXqq

“
1

2
pP 2

` ωX2
´ ωq

“
1

2
pP 2

` ω2X2
q ´

ω

2

(9.26)

where we used the fact that rX,P s “ i~ “ i in the ~ “ 1 convention. Therefore,
we add a correction to recover the Hamiltonian:

H “
1

2
pP 2

` ω2X2
q

“
1

2
pP ` iωXqpP ´ iωXq `

ω

2

(9.27)

where we effectively add ω{2 to every eigenvalue of H, corresponding to the zero
point (ground state) energy of the system.

Recall the ground state is ψ0pxq “ e´
ω
2
x2 and the momentum operator is P “

´i B
Bx
. hence, we apply H “ 1

2
pP ` iωXqpP ´ iωXq ` ω

2
to ψ0 by first computing:

pP ´ iωXqψ0pxq “

ˆ

´i
B

Bx
´ iωX

˙

e´
ω
2
x2

“ ´ip´ωx´ ωxqe´
ω
2
x2

“ 0.

(9.28)

It follows that
1

2
pP ` iωXqpP ´ iωXqψ0 “ 0 (9.29)

so that
Hψ0 “

ω

2
ψ0, (9.30)

as desired.

9.3 Creation and Annihilation Operators
The Hamiltonian for the quantum harmonic oscillator is

H “
1

2
pP ` iωXqpP ´ iωXq `

ω

2
. (9.31)

Definition 8 The creation operator is b` “ P ` iωX and the annihilation
operator is b´ “ P´iωX. They are Hermitian conjugates of each other; however,
they are not observables because they are not individually Hermitian.
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We can compute the commutator of the creation and annihilation operators:

rb`, b´s “ rP ` iωX, P ´ iωXs

“ rP, P s ` riωX, P s ` rP,´iωXs ` riωX,´iωXs

“ rP, P s ` iωrX,P s ´ iωrP,Xs ` ω2
rX,Xs

“ ´2ω

(9.32)

where we used the fact that rP, P s “ rX,Xs “ 0, rX,P s “ i, and rP,Xs “ ´i.
Consequently,

rb`, b´s “ ´2ω. (9.33)

By convention, we define

a` :“
b`
?

2ω
, a´ :“

b´
?

2ω
(9.34)

such that ra`, a´s “ ´1. We can now write the Hamiltonian in terms of the
canonical creation and annihilation operators:

H “
1

2
pP ` iωXqpP ´ iωXq `

ω

2

“
1

2
b`b´ `

ω

2

“
1

2
p2ωqa`a´ `

ω

2

“ ωa`a´ `
ω

2
.

(9.35)

The Hamiltonian in terms of the a` and a´ is:

H “ ω

ˆ

a`a´ `
1

2

˙

. (9.36)

In essence, we have reduced the process of finding energy levels to finding eigen-
values of a`a´ given that ra`, a´s “ ´1.

Let |0y be the eigenvector of the ground state. Recall that pP ´ iωXqψ0pxq “
b´ψ0pxq “ 0, so we know a´ |0y “ 0. Now consider the creation operator applied
to the ground state a` |0y. We would like to know whether this is an eigenvector
of the energy and, if so, its corresponding eigenvalue λ. That is, we are interested
in the eigenvector-eigenvalue equation:

pa`a´qa` |0y
?
“ λa` |0y

a`a´a` |0y
?
“ λa` |0y

(9.37)

We can re-write the commutator identity

ra`, a´s “ a`a´ ´ a´a` “ ´1

a`a´ ` 1 “ a´a`.
(9.38)
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Substituting this into the left-hand side of 9.37, we get

a`pa`a´ ` 1q |0y . (9.39)

Since a´ |0y “ 0, the left-hand side simplifies to

a` |0y . (9.40)

Equating the left-hand side and right-hand side of Equation 9.37, we find:

a` |0y “ λa` |0y . (9.41)

Therefore, a` |0y is an eigenvector of a`a´ with eigenvalue 1:

pa`a´qa` |0y “ 1 ¨ a` |0y . (9.42)

It follows that a` |0y is an eigenvector of the Hamiltonian

H “ ωpa`a´ `
1

2
q (9.43)

with eigenvalue ω ` ω
2
“ 3

2
ω. Thus, we added one unit of energy to the

ground state by acting with the operator a`.
Let’s continue to add energy with the creation operator. Suppose

a`a´ |ny “ n |ny . (9.44)

We have already found eigenvectors for n “ 0 and n “ 1. Let

|n` 1y :“ a` |ny (9.45)

then
a`a´ |n` 1y “ a`a´a` |ny . (9.46)

Substituting the identity a´a` “ a`a´ ` 1,

a`a´ |n` 1y “ a`pa`a´ ` 1q |ny

“ a`a`a´ |ny ` a` |ny

“ a`pa`a´ |nyq ` a` |ny

“ a`p|n` 1yq ` |n` 1y

“ pn` 1q |n` 1y .

(9.47)

Theorem 5 Let |ny be an eigenvector of a`a´ with eigenvalue n such that:

a`a´ |ny “ n |ny , (9.48)

then a` |ny is also an eigenvector of a`a´ with eigenvalue n` 1:

a`a´pa` |nyq “ pn` 1qa` |ny (9.49)

or, in the notation |n` 1y :“ a` |ny, we find:

a`a´ |n` 1y “ pn` 1q |n` 1y . (9.50)
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The takeaway is that a` acts on any eigenvector of a`a´, say |ny, to raise the
eigenvalue by 1. Hence, there is a spectrum of eigenvalues of energy, namely:

ω

2
,
3ω

2
,
5ω

2
, . . . ,

ωpn` 1{2q

2
, . . . . (9.51)

The creation operator a` increases the energy in integer multiples of ω each time
it acts such that:

ω

ˆ

n`
1

2

˙

´
ω

2
“ ωn (9.52)

where ω{2 is the ground state. Hence, we have the following table of eigenvectors
and eigenvalues:

Eigenvectors Eigenvalues

|0y ω
`

1
2

˘

a` |0y ω
`

3
2

˘

pa`q2 |0y ω
`

5
2

˘

...
...

pa`qn |0y ω
`

n`1
2

˘

Table 9.1: Eigenvectors and eigenvalues of the system

This explains why energy of oscillations is quantized, in units of ω~ (re-introducing
~).

9.3.1 Shape of Wavefunctions for Harmonic Oscillator

Consider the ground state function for the quantum harmonic oscillator:

ψ0pxq “ e´
ω
2
x2

, (9.53)

which is a symmetric Gaussian-like wave function. Consider the shape of the wave
function at the next energy level. Apply the creation operator b` “ P ` iωX “

´i B
Bx
` iωx:

b`ψ0 “ i

ˆ

´
B

Bx
` ωx

˙

e´
ω
2
x2

“ ipωx` ωxqe´
ω
2
x2

“ 2iωxe´
ω
2
x2

.

(9.54)

This is an anti-symmetric wave function, as shown in Figure 9.2. It has one zero
or node, such that the probability the particle appears at that point is nil.
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Figure 9.2: Antisymmetric wave function for first non-zero point energy.

If we apply the creation operator again, the wave function will be symmetric
and have two nodes, as shown in Figure 9.3:

b`ψ19

ˆ

´i
B

Bx
` ωx

˙

xe´
ω
2
x2

9pquadratic polynomialqe´
ω
2
x2

.

(9.55)

Figure 9.3: Wave function with two nodes, corresponding to the second energy
level.

By induction, as we apply the creation operator b` to the wave function, the
wave will oscillate more rapidly. That is, it will have high momentum and the wave
function will spread out over greater distances, swinging back and forth. Likewise,
the annihilation operator b´ lowers the energy states.
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