ON THE ALGEBRO-GEOMETRIC ANALYSIS OF MEROMORPHIC (1,0)-FORMS
SERGIO CHARLES

ABSTRACT. In this paper, we analyze the theory of meromorphic (1,0)-forms w € MQ“’O)(C]P)l). Hence, we show
that on a compact Riemann surface of genus g = 0, isomorphic to CP', every non-constant meromorphic function
f: X — CP! has as many zeros as poles, where each is counted according to multiplicities. Such an analysis gives
rise to the following result. Invoking the Riemann-Roch theorem for a compact Riemann X with canonical divisor K,
it follows that deg(f) = 0 for any principal divisor (f) := D on X. More precisely, {(D) —¢(K — D) = deg(D)+1=1
or £(D) — £(K — D) — 1 = 0. Furthermore, for a diffeomorphism 7 : X — CP* of a certain kind, a multistep program
is implemented to show X is a compact algebraic variety of dimension one, i.e. a non-singular projective variety.
Hence, we adopt a group-theoretic approach and provide a useful heuristic, that is, a set of technical conditions to
facilitate the algebro-geometric analysis of simply connected Riemann surfaces X.

1. INTRODUCTION

G] 16 Oct 2017

We introduce the theory of meromorphic (1,0)-forms w € MQ1) on a class of Riemann surfaces X. In the
0 first part of the paper, we analyze the diffeomorphism 7 : X — CP! which alludes to topological considerations of
- complex projective space CP". We thereby resolve that if n*w is a (1,0)-form belonging to the sheaf of differential
(1,0)-forms Q1.0 (X) on the compact Riemann surface X, endowed with a complex Hermitian inner product, for
E N w the pullback of w € MQUO(CP') modulo diffeomorphism 7 : X — CP!, then the Fourier-like transform

(x) = ox, e~ "™EX) p*w cannot be of compact support for &,y € X, C X unless w is identically zero. Conse-

ath

My
quently, |, ou, W = 0 for w a meromorphic (1, 0)-form, U; C CP!, SUDg:— (2, 20) lg| < 400, and a globally defined chart
= ¢: X — C. Such a result is proved via measure theory and cobordism theory. It is then shown that 7 : X — CP*
is biholomorphic, where X is a compact Riemann surface realized as the quotient of its universal covering by a
subgroup of deck transformations, i.e. X := X /T. Thus, X is then isomorphic to the complex projective line CP!

0O such that it inherits an elliptic geometry.
Thereafter, we consider a Lie group interpretation of | ox, e~ EXIn*w £ 0 for which a representation of the

™~ Mobius group Aut(C) is considered. An explicit construction is given by considering M&bius transformations and
[~ actions of SO(3) on S%. Using a linear approximation, we readily obtain an expression for 0;(x) in terms of group
\__! actions on S%. To prove the isomorphism X 2 CP! we develop a three step program. In particular, we show
= that the map 7 is, in fact, a biholomorphism. Secondly, it is shown that the Riemann surface X has vanishing

% first singular homology group H;(X;C). Lastly, it is shown that the Riemann surface X given by the vanishing
a polynomial equation

0 b(32) (Do) -
Z0 20 20 20

is an algebraic variety of dimension one such that X is necessarily compact by Griffiths and Harris [6, Pg. 215].
More precisely, this means that X is not a Stein manifold.

An analysis is carried out for the case in which the local coordinates (z;) on the manifold are isothermal,
such that the metric is conformally equivalent to the (constant curvature) Euclidean metric, belonging to the
equivalence class [g] = {g|h = A2g for A a real-valued smooth function}. In particular, it is demonstrated that (z;)
are necessarily local isothermal coordinates on the manifold if and only if

dp\? da\? (dB\* .. dB da
2 -— — | —\ 3= 2im——— | =
( ) <d2’1> + ¢ (21) [<d21> ng + ZdZQ le 07
obtained without invoking the Beurling transform to solve the Beltrami equation. Alternatively, if the sufficient
condition ¢? = —g? is satisfied for g € MQOO(CP!), then the Beltrami equation is satisfied and (z1,2z) must
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necessarily be local isothermal coordinates on X, such that

1 Ap ., 1 Alogl' |
(3) X(X)——E//e—pds——g// 9L s = 2
X X

implies that the Riemann surface has genus zero. Likewise, we analyze the Beltrami equation for the complex local
coordinates w = z1 + iz9 and z = x1 + ixe imposed on X. We also show that for w assumed to have continuous
partial derivatives, then w is a p-quasiconformal mapping provided it satisfies the Beltrami equation

(@) = (a5

for a complex-valued Lebesgue measurable u satisfying the norm condition |u|? < 1 or sup |u| < 1.
By invoking Hodge theory, it is shown that the condition on genera can be strengthened. Using this we obtain
a statement on homology, whereby the singular homology groups assume the form

C ifk=0,2
5 H.(X:C) = T
(5) k( ) {0 otherwise

if and only if the condition for ¢ = 0, i.e.
YAp+T(z1)k
/X F(z1)2<1>(z1, ZQ)
in isothermal coordinates (z1, z2) is satisfied. Finally, the paper concludes with the analysis of cohomology theory
where we realize 0;(x) = fan e~ ™EX) n*w as a de Rham homomorphism T : HY o (X) — HP(X;C) to obtain an

dz1 Ndzg =0,

algebro-geometric result: If X is a Riemann surface belonging to the category C, and if X /T =X =CP! for T =
Autc(X) = m1(X) trivial where X is simply connected with genus g = 0, then the first singular cohomology group
is nontrivial if and only if the first de Rham cohomology group is nontrivial. However, since X is simply connected,
the first singular cohomology group H'(X;C) vanishes, which implies that for the induced homomorphism (f;)* :
H!>(X)— H'(X;C)

ker ((f1)7) = {lw] € Hip(X) : (f1)*(W]) = em(xic) = 0} = Hip(X)

since H'(X;C) is the trivial group, i.e. ker (fcl 01) = H},(X) where ¢! denotes a 1-cycle in [c!]. By considering

the logarithmic (1,0)-form w € Q%’O)(logD) for D a principal divisor on X, we finally prove a special case of a

well-known theorem: On any compact Riemann surface X every non-constant meromorphic function f : X — CP!
has as many zeros as poles, where each is counted according to multiplicities.

2. TorPoLOGY OF COMPLEX PROJECTIVE SPACE

We interpret CP' as being diffeomorphic to S? to characterize the compact Riemann surface X, thus facilitating
later Lie group analysis. Let n : X — CP! be a map from the compact Riemann surface X (algebraic variety
of dimension one) onto the complex projective line. Similarly let U; C C]Pl,Xj C X be compact subsets of CP*
and X, respectively, such that Uj U; € C and Uj X; € X are compact. Consider a meromorphic (1,0)-form
w = g(2)dz € MQLO(CP) defined globally with g a meromorphic function on Uj, that is, holomorphic on
U; \ D; where g has singular points on D;. Then the pullback n*w, modulo projection, belongs to MOE0) (X).
Note that the space Q210 is stable under holomorphic coordinate transformations such that its elements transform
tensorially. Thus, in general, the spaces Q19 and Q1) determine complex vector bundles on an arbitrary complex
manifold.

We now give a preliminary introduction to the theory of logarithmic differential forms, originally due to Deligne
[10, Pg. 89-101].

Definition 2.1. Let X be a complex manifold, D € X a principal divisor, and w a holomorphic p-form on X — D.
If w and dw have a pole of order at most one on D, then w is said to have a logarithmic pole along D, whereby w is
formally defined as a logarithmic p-form. The sheaf of logarithmic p-forms on the manifold X make up a subsheaf
of the meromorphic p-forms on X with a pole along the principal divisor D, denoted by Q&(logD).

For the present discussion of Riemann surfaces, logarithmic 1-forms have local expressions given by w = % =

(% + Z,( ZZ))) dz for a meromorphic function f(z) = 2™g(z) of order m at 0, where g is a non-vanishing holomorphic

function at 0. The order m of f at 0 will henceforth be m = 0, such that logarithmic 1-forms w € Qg}’o)(logD) -
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MQL0) (X)) have local expressions w = % = “;/((ZZ)) dz for g a non-vanishing holomorphic function at 0. By definition
of Q& (logD), where the exterior derivative satisfies the boundary condition d? = 0, it follows that dQ%. (logD) C
Qg’gﬂ)(logD). For clarification, throughout the paper we refer to meromorphic (1,0)-forms on X; however, as

shown in the concluding example, the theory can be specialized to Q;’O)(logD) c MQ10) (X).

Definition 2.2. The construction dQ% (logD) C Qg‘?ﬂ)(logD) leads to the complex of sheaves (Q%(logD),d*)
defined to be the holomorphic log complex with the corresponding divisor D.

The complex (2% (logD),d*®) is a subcomplex of j,Q%_ ), for which j : X — D < X is the inclusion of Q% _,
the sheaf of holomorphic forms on X — D. Let the divisor D have simple normal crossings, such that D =) D,
for D, smooth, irreducible, mutually transverse components. It follows that the divisor is locally given by the
union of hyperplanes z1...z,, = 0 in local holomorphic coordinates. It can be shown that the stalk at p of Q_:E( (logD)
satisfies [10, Pg. 90],

dz dz
O (logD), = Ox,pz—ll ®..® Ox,pz—: ® Ox pdzp41 @ ... @ Ox pdzn

for Ox the sheaf of structure rings on X, with Q% (logD), = /\;‘?:1 QL (logD),.

The Riemann surface X admits the complex inner product (o, 8) = [ x QA *( for o and § in MQ(CI’O) (X), the
sheaf of meromorphic (1,0)-forms of compact support on X. Consider the following integral, 7; := fanw =
fan gdz = ij dw, by Stokes’ theorem, wherein U; is a compact subset of the complex plane with bound-
ary consisting of piecewise smooth rectifiable Jordan curves, i.e., it has Lebesgue measure p(U;) < 400 with
Supp > p_q |2jk — 2jk—1| < 400 for w a meromorphic (1,0)-form defined in a neighborhood of the closure of U;
and OU; given parametrically by z;(t) on the interval a < ¢t < b such that P = {to,...,t,} is a partition of the
interval [a, b].

Before parameterizing the Riemann surface, we begin with elementary topological considerations. In particular,
we endow the topological space CP! with a cllart, and thereby a globally defined atlas. The following construction
is due to Forster [4, Pg. 3-4]. Let CP! := C be the one point compactification of C, where the singleton {oc}
is not contained in C. Thus, one introduces the following topology on CP'. The open subsets of the space are
the conventional sets U C C together with the modified sets V U {oo} where V' C C is the complement of
K C C for K compact. Hence, with this topology, CP' becomes a complex manifold homeomorphic to S2. Let
U := CP'\ {00} = C, Uy := CP'\ {0} = C* U {0} and define the maps ¢; : U; — C, for i = 1,2, whereby ¢ is
the identity and ¢9 is given by

bo(z) = {1/2 for z € C¥,

0 for z = oo.

Such maps are homeomorphisms and therefore CP! is a real two-dimensional manifold. The coverings U; and Us
are connected and have non-empty intersection, meaning that CP' is connected. The complex structure on CP*!
must consequently be defined by the atlas consisting of the charts ¢; : U; — C, for i = 1,2. Lastly, it must be
shown that the two charts are holomorphically compatible. In particular, ¢1(U; N Us) = ¢2(U; NUs) = C* and
¢9 0 gbl_l : C* — C*, z — 1/z is biholomorphic. More generally, we consider complex projective space CP", which
is the set of all lines through the origin of C"*!. Equivalently, it is defined as

CP" := (C™™\ {0})/C* = (C"T"\ {0})/ ~,

where C* acts by scalar multiplication on the complex vector space C" 1. If (zq, 21, ..., 2,) is a point in CP", then
for A € C* the two points (Azg, Az1, ..., Az,) and (2, 21, ..., 2, ) define the same point, inducing an equivalence class

denoted by [zg : 21 : ... : 2] in homogeneous coordinates, in the sense of projective geometry. The origin (0,0, ...,0)
does not define a point in CP". To endow the space with a topology, let U; be the open set U; := {[z0 : ... : 2|2 #
0} C CP". Define the bijective maps [7, Pg. 1-5]
20 Zi—1 Zi4+1 z
Ti:U; — Cl 200 o 2p) = <—,..., e —"> )
Zj Zj Zi Zj

Then the transition maps

Tij = T; O Tj_l 21 (UiNU;) = (U N U;j),

wy Wi—1 Wit1 wi—1 1 wjp Wn,
(Wi, oy W) > <— ~ Un

yaeny , yaens , s
W; W; W; w; Wi Wy W;
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are biholomorphic. That is,
—1
Tij (w1, ..., wp) = 73 0 T (w1, ..., wy,)

=7i(wr o rwior i wigg t s wy))

=7 ([ﬂ U Wiz 01 Wit N Y1 : i : Wit T ﬂ})
Wy ws ws Wy Wy Wy ws

_ <ﬂ Wi—1 Wit1 wi-1 1 wjp %)

o e T T e s )

Therefore, CP" carries the structure of a complex manifold of complex dimension n. In terms of universal coverings,
CP" can be realized as the quotient of the unit 2n + 1 sphere in C"*! under the action of U(1), i.e. CP" =
S?7+1/U(1). One obtains CP" by first projecting onto the unit sphere, whereby every line in C"*! intersects the
sphere in a circle S, and then identifying the object by the natural action of U(1). In particular, for n = 1,
CP! = Uy U U; where

Up = {[20 : z1]|z0 # 0} = {[1 ‘ %}

&

Note that CP* = S3/U(1), obtained by projecting to the unit sphere S? and then identifying under the action of
U(1). Such a map induces the classical Hopf fibration S? < S2.

ZO#O} = {[1 : w)|jw € C} = $%\ {oo} and U; = {[20 : z1]|z1 # 0]} =

21 # 0} = {[w : 1]Jw € C} = §?\ {0}. It follows that 791 = Tgo7; *(w) = mo([w : 1]) = L with 719 = o

3. COMPACT SUPPORT
We recall the definition of an m-current [13].

Definition 3.1. Let Q@ (M) denote the space of smooth m-forms with compact support on a smooth manifold
M. A current is a continuous linear functional on Q@ (M) in the sense of distributions. The linear functional
T :QF (M) — R is an m-current if it is continuous in the sense of distributions. In particular, if wy is a sequence
of smooth forms with compact support in the same set, constructed in such a way so that all of the derivatives of
their coefficients tend to 0, uniformly, when n tends to infinity, then T'(w,) tends to zero.

The following theorem is of critical importance in the theory of differential meromorphic forms and, by extension,
logarithmic forms.

Theorem 3.2. If n*w is a (1,0)-form belonging to the sheaf of differential (1,0)-forms Q10 (X) on the compact
Riemann surface X, for 7] w the pullback of w e MO 0)((C]P’1) modulo diffeomorphism 1 : X — CP!, then the
Fourier-like transform o;(x) = fa mEX)*w cannot be of compact support for £,x € X; C X unless w is

identically zero, i.e. supp(aj( ) = {X € Xjloj(x) # 0} is not compact.

Proof. The proof of this theorem will be bifurcated into two parts: one in which the m-current is in the dual
* *

space (Q(Cm’o) (X )>R and more generally, one in which the m-current is in the dual space (an 0 (X ))(C . Such an

argument will require both elementary measure and cobordism theory.

(Case 1). Let w € Q(Cm’o) (X), where the space of currents is naturally endowed with the weak*-topology, simply
called weak convergence. For X a complex manifold equipped with a Hermitian inner product then the m-current

is defined as a linear functional from Q(m 0 (X) to the base field, with respect to R, for compact X = Uj X;
endowed with a strong topology. Such a current 7'(w) is in the dual space of Q(m’o) (X). Hence, f: Q7 (X;) — I;

is in the dual space of Q% (X;) with respect to I; C R a compact subset (1nterval) of R for f := g~ ! o T with
QB (X;)g 2T : QX)) — R and g: I; — R an 1nclu510n map. Consequently, the integral | x, W Is an m-current

for dim(X;) = m; i.e., an m-current can be defined as

/ w —/ dw = J](dw).
9X; X;

Similarly, the space of all m-currents on X, denoted by D,,(X), is a real-valued vector space by hypothesis
of [[0X;]](w) € (an’o)(X))]R with operations defined by (T' + S)(w) = T'(w) + S(w), (A\T)(w) = AT (w). The
support of a current 7 € D,,(X) is the complement of the largest open subset U C X such that T'(w) = 0

whenever w € QF(U). The linear subspace of D,,(X) consisting of currents with compact support (in the above
sense) is denoted by &,,(X). Therefore [0X;]|(w) = fan w= /[ X, dw is an m-current defined for homological
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integration. Consider the case in which X is a Riemann surface, whereby homological integration defines a 1-
current [[0X;]](w) = fan w = fXj dw for w € Qg,o) (X), in the sense of m = 1 the complex dimension of the

manifold. It follows that for the map f; : I; — X}, locally defined on compact X; C X with I; C R a compact

subset of R, the induced homomorphism on sheaves (by naturality of the pullback) is f; : QL(X;) — QL(I).

For w € Q(l 0)(Xj) (the restriction of the globally defined (1,0)-form, w, to X; C X), let w = n*(g(z)dz) for

n*g € CF(X;), gdz € Q( )(Uj) (for U; € CP' compact and CP' := U;Uj) and n : X — CP* so that 0 :=
e mEXy = eI EX) g(n)dn € Q(CI’O) (X;) w1th e~ mEX) € 0°°(X;). Hence,

9):/ 9:/ e—iﬂ(ﬁ,x>w:/ e~ mEX) g(n)dn

0X; 0X; 09X,

[ (e gan) - / “mNg()dfy = Firelg(fy))
fj (8XJ) H

for [[0X;])(0) € Daim(x,)(X;) C R" and a unique f; : I7 — 0X;. It follows that [[0X;]](0) = Re[[0X,]](¢), or more

precisely 7+ {g(f;)} = ReFr:{g(f;)} meaning that g is real-valued and even. Notice, if g and f; commute, namely

go fj = fjog, then Fi{g(f;)} = ReFr:{g(f;)} = Fr:{Reg(f;)} = Fr:{(Ref;) o g} = Fiz{g o (Ref;)} for g and

Ref; = t; commutable functions. As such, [[0X]](0) = Fr: {gotj} = [ e~ (i) g(t;)dt ;. Without invoking such
J

commutative properties, if 77! := f; : I; — X, T(X;) = I;, then

oi(x) = / e~ mEX) g(n)dn = / e~ ™I g(f5)dfj = / e”miX) (g o f;)df;
ox; £512) £

. d . .
- / 090 f) Yt - / e g(t)dt = / e~ g(t)dt
(I dt o K;

for compact I := K; C R uniquely defined by f; : I¥ — 0X; and df; a Radon measure, namely the pushforward
dfj = (fj)« : T*1; = T*X;,1; — T* X, with trivial kernel. This modified Fourier transform can be specialized to
oj(z) = f K; e~ ™*tg(t)dt, by applying holomorphy under the integral, for z € C. If we assume the contrapositive,
Le. if the modified Fourier-like transform o;(z) = | K, e~ ™#g(t)dt is zero on a compact subset of K; C R (that is,
it has compact support), it has an accumulatlon point. Therefore, it is zero everywhere on C by the isolated zeros
theorem, i.e. 0j(2) = 0. By the above computation, o;(x) = fan e ™EX) g(n)dn = fan 0 = ij e~ X g(t)dt,
the compact support of w = g(n)dn on X; implies the compact support of g(t)dt on Kj, and conversely. Thus
if res(w)|x, has compact support, then res(g)|x, must have compact support. It follows that o;(z) and, by
identification, f K, e~ X g(t)dt cannot have compact support, meaning that f ox, e~ m&X)w cannot have compact
support, unless w = 0. This proves the first case.

(m,0

(Case 2). The generalized m-current is a linear functional from €2
recall the definition of a cobordism.

)(X ) to C. To prove the general case, we

Definition 3.3. A cobordism between manifolds M and N is a compact manifold W whose boundary is the disjoint
union of M and N, OW = M U N.

As before, let o;(x fa Xy for w € MO (X) and let 5 : CP' — X be a diffeomorphism. That
is, [[0X;]](8) = fan 0 = fan e~ Xy is a 1-current in (an,o) (X))(*C Therefore, since dim(X) = dim(CP!)
and because 7 is a diffeomorphism, for U; C CP! compact and ¢ € Xj, 0i(x) = fn,l(axj)n* (e_”<§’x>w) =
fa —im(EonX) gy, Let nw = U(2)dz € MQUO(CPY), then e~ mEomX) = ¢=™&X) for z € CPL. It follows that

= fa e~ im(zx (z)dz. We now perform a classical surgery construction of a manifold with boundary
IRJ = I Recall that if X, Y are manifolds, both with boundaries, then the boundary of the product manifold is
given by (X xY) = (0XxY)U(X x9Y). Likewise, the cobordism of two identical manifolds is YLIY = 9(Y x|0, 1]).
For U; C CP!, U; UU; = 9(U; x [0 1]) = (0U; x [0,1]) U (U; x 0[0,1]) = (0U; x [0,1]) U (U; x 0). Consider the
lift ¢ : oU; — I; C R, then I; = QS((@U]- x [0,1]) U (U; x 0)). In the standard topology, intQ = () because there
exists no open set (that is, an open interval of the form (a,b)) inside Q. Similarly, c/Q = R because every real

can be realized as the limit of a sequence of rational numbers. Therefore, we have 0Q = clQ \ intQ = R, and
Q:= (0U x [0,1]) U (U x 0). Let 0Q; = clQ; \ intQ; = R; = I;. Furthermore let v : U; — Q; be a smooth map,
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then v induces a lift 9U; = v71(0Q;) = v 1(R;) = v~ 1(I;) and
oj(x) = /aU e XN (2)dz = lim e_mfl(ﬁn)’m\l’(’y_l(en))dfy_l(en)

n=00 J\—1(1,)=0U;
for a uniformly convergent sequence of points {e, } € Q;. Consider a pointed map e, : (Uj), — (@])6 (Uj),, —
(Uj),, +(Qj),., — (Qj),, , whereby the two spaces U; and Q; can be identified at e,. Hence, for v, L(en) € Qy, the
pullback (7; 1(en))* transforms v~ (e,) to another point g, in Q;. As such, for 7., = Ve 1 bijective, we obtain the
following Lebesgue integral

70 = Jim (1) (eI 0 (o ), (en)

"0 e 0ven (1) =Yer! oYen (I;)=1;

= lim e_i”<q”’x>\ll(qn)dqn :/ e‘iﬂ(t’xhll(t)dt,

—

for the sequence of rational numbers {g,} converging uniformly to {¢t} € R. But {g,} is arbitrary, and there-
fore the equality holds for all {g,} converging uniformly, whereby there is an uncountable infinity of such
points (i.e. the set of points is dense). Specialized to o;(z) for z € C, the linear functional becomes o;(z) =

f eIy U(t)dt := f e~ (6200 If we assume the contrapositive, i.e. if f e~ (620§ is zero on a compact subset
of I; C R with accumulatlon point, then it will be zero on all of C by the isolated zeros theorem. However,
because the Fourier transform is injective, this implies U(t) = 0 or 6 = 0. Hence, using the former equality

fa —imEX) = f e~ im(t2) g U(t)dt and invoking the converse of the above argument, if w has compact

support then 6 has compact Support. Then (%) cannot have compact support, and thus, neither can o;(x), i.e.,

supp(o;(x)) = {x € Xjlo;j(x) # 0} is not compact, unless w = 0. The proof the theorem is now complete. O
The following theorem, due to Forster [4, Pg. 108], will be invoked in the latter discourse to prove several con-

ditions that induce an isomorphism of complex manifolds, namely Riemann surfaces, X := X /T’ = X /Autc(X) =
CP'.

Theorem 3.4. Suppose that g € E(C) is of compact support. Then, there is a solution f € E(C) of the equation
Of |0z = g having compact support if and only if

(6) //Cz"g(z)dz ANdzZ =0

for alln € N and f(¢) = [ f(c ‘Z](_ngz Adz, where E(C) denotes the C-algebra of functions differentiable with respect

to the local coordinates x and y for z = x + iy.

Proof. By Stokes’ theorem, this condition is necessary. The converse direction follows from Serre duality.

Consider wy, = g(z)dz € T'(CP', K ® O(—k)) as well-defined forms with values in the line bundle O(—Fk), by
using the standard trivialization of O(—k) and the assumption that g has compact support. By Serre duality,
there exists a solution of

O fr = wi
if and only if the integral condition is satisfied for all n up to order k — 2, as the zFdz, k=0, ..., k — 2 span the
holomorphic section H?(CP!, K ® O(k)). The section f;, is unique, for k > 1, and identifying f; with a function by
using the aforementioned trivialization of O(—k), all f give rise to the same function, denoted by f. Therefore,
there exists f: CP' — C which vanishes up to arbitrary order at co and which satisfies

Of = g(z)dz

Let U C CP!, oo € U be an open connected set such that g(z)dz is identically zero for z € U. Solutions of
of = g(z)dz on U are unique up to holomorphic 1-forms on U. Hence, as f vanishes up to arbitrary order at
oo, f must vanish identically on U, which means that f has compact support. The proof of the theorem is now
complete. O
The following lemma is due to Dolbeault [4, Pg. 104-105] and will be used to prove the existence of solutions
to the inhomogeneous Cauchy-Riemann differential equation df/0z = g [See Appendix [A] for a complete proof].

Lemma 3.5 (Dolbeault’s Lemma). Suppose g € £(C) has compact support. Then there exists a function f € E(C)
such that g’f =g.
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4. LIE GROUP INTERPRETATION

For a complex manifold (M, ) endowed with a complex structure ¥ and a metric g, the set of diffeomorphisms
of M that preserve the structure (the symmetry group of the structure) is given by

Aut(M) :={f : M — M, f biholomorphic}.
In this context we consider the n-by-n generalized-linear group
GL(n,C) :={A € M(n,C) : det(A) # 0},

specialized to n = 2, which is an open submanifold of M (n,C) and thus a 2n? real-dimensional manifold. It is
a Lie group because matrix products and inverses are smooth functions of the real and imaginary parts of the
matrix entries [8, Pg. 152].

Suppose [z : w] are homogeneous coordinates on CP!, then the diffeomorphism o : CP'* — S? is given by

oolz 1 w] = ( Re(wz) ~ Im(w?) ‘w|2_‘z‘2> and o, : S? — CP!. Furthermore, suppose ( ?; B > € GL(2,C),

[wP+227 [wP+2]2 [w[*+]2]? o

then the linear fractional transformation f(z) = ‘f‘; ig, which is holomorphic for {z € C : vz + d # 0}, can be

extended to a meromorphic function on CP'. The automorphism f : CP' — CP' is obviously biholomorphic.
Let SO(3) be the group of orthogonal 3-by-3 matrices having determinant one, i.e. SO(3) := {A € GL(3,R) :
det(A) = 1, AT A = I}. By identifying CP' with the 2-sphere under the diffeomorphism o, then for A € SO(3),
oy Y6 Aoog : CP' — CP! is biholomorphic [, Pg. 8-9]. Every matrix A € SO(3) may be written as a product A =

010 B; 0 B, 0
H?:l AjforAj= 0 0 1 JorasA;= ( 0] 1 > . Therefore, for A € SO(3), A = H?:l ( OJ 1 > . Hence
100

oy LoAooy € Autp(C), the group of deck transformations on CP! for the universal covering map p : CP! — CP! the
identity. In particular, CP' is realized as a universal cover by the Aut,(C)-action of deck transformations, an orbit

CP! JAut,(C) where Aut,(C) = m;(C) is trivial. Furthermore, with every invertible 2-by-2 matrix = < CCL 2 >

we can associate a Mobius transformation f(z) = ZZZIS such that h is non-singular to gaurantee conformality, i.e.
det(h) # 0. For # : GL(2,C) — Aut(C), X is a Lie group and # o < : g > € Aut(C) = PGL(2,C).

Consequently, for n*w € MQIY(X) a logarithmic (1,0)-form, 1 : X — CP! a map, 7; = dU; a path in CP!
(i.e. a continuous map from the unit interval [0, 1] into CP'), and ¢ € X a point “lying over” +;(0) (i.e. for
p : CP' — CP' an identity cover, p(c) = v;(0)), then there exists a unique path T'; = 9X; lying over v, (for
polj = ;) such that I';(0) = c. The curve I'; is the lift of v; by p. Let {,x € X, and let II be an action
of aut,(X), the Lie subalgebra associated with Aut,(X), such that Lie(Aut,(X)) = aut,(X) for Autp((@) =
{flf(z) = ‘clzzjr'g, ad — be # 0} =2 PGL(2,C). Assuming the action of II on X is transitive, then there exists a

I € aut(X) such that Iy x)€ = x. Therefore,

(7) Uj(X):/ e—iw(f,ﬂ§>n*w:/ e—iw<§,log(enf)>n*w:/ e—iﬂ({,{logﬁ),’,}*w
0X; r;

for IT = ¢! € Aut(C), generated by the exponential map. It follows that ﬁ0< 3 ? > € Aut(C) for # : GL(2,C) —

Aut(@). By letting IT = 7 o ( o« B > , then

)
700 = [

enle(3 D)

e ’ vy 6 n*w _ / e—iﬂ|§|2log(ﬁoh)n*w _ / (ﬁ' o b)—in|§|2 'I’]*w

J rj Ly

for h = < : g > € GL(2,C). The exponential map restricts to a diffeomorphism from some neighborhood 0

in g := s0(3) to a neighborhood of e in G := SO(3). If Aut(X) is the Lie group of automorphisms of X, then
aut(X) is its Lie algebra and ® : SO(3) — Aut(X) is a Lie group homomorphism such that the following diagram
comimutes:
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*

s0(3) SN aut(X)

ezpl iea:p .

SO(3) —2 Aut(X)

Then Aut(X) inherits the manifold structure of SO(3) under the mapping oy' 0 Ao gy : CP' — CP! for the
diffeomorphism o : CP! — S? and A € SO(3). Note that S™ is a homogeneous space for O(n + 1), which induces
the fiber bundle O(n) — O(n + 1) — S™, whereby the orthogonal group O(n + 1) acts transitively on the unit
sphere, and the stabilizer of a point on S™ is O(n). We now construct the group actions associated with the rotation
group SO(3) and obtain an explicit homomorphism between SO(3) and SU(2), the universal covering group of
SO(3). This general construction is due to Gelfand, Minlos and Shapiro (1963)[5]. Let g € SO(3) be a rotation,
then the action ¥4(g) : S — S? on the embedding space R? maps points on S? to other points on S?. By forming
the composition o' o X4(g) 0 gg of CP! with P’ € CP' and P € S?, 0,1 0 X4(g) 009 : ( = P+ P+ S4(g)P =
gP = 05 (gP) = 05 (9)o5 H(P) = 05 (Zs(9))¢ := Zu(9)¢ = ¢'. In this regard, ¥,(g) is a transformation (that
is, an automorphism) of CP! associated with the transformation Ys(g) on the embedding space R3. As such, the
two rotations g4 and gg through an angle of ¢ about the z-axis and 6 about the z-axis, respectively, correspond
to automorphisms of CP'. In fact, these rotations generate all of SO(3) where the composition of g, and gg
corresponds to the composition of Mobius transformations where a Mobius transformation,

</_ac+5
CyCH+6

with ad — By # 0

to ensure conformality, can be represented by a matrix transformation

(: §>¢M—57:L

However, these matrices are not uniquely determined, for multiplication by —1I still corresponds to the same frac-
tional linear transformation. Therefore, a given Mobius transformation corresponds to two matrix representations
g,—g € SL(2,C). Explicitly, the actions on S? become

_ cosp —sing 0 ei% 0
Zu(ge) = Zu sing cosgp 0 =4 o |,
0 0 1 0 e "2
! 0 0 cos? ising
Yulge) = Xy 0 cosd —sind =4 ( vy p > ’
0 sinf cosb tsingy - €08y

which are in fact unitary matrices 3,(S0(3)) C SU(2) C SL(2,C). It follows that for a general rotation ggsgy,

cosp —sing 0 1 0 0 costyp —sinyy 0
9(6,0,¢) = 9909y = | sing cosp 0 0 cosd —sind siny  cosyp 0 |,
0 0 1 0 sinf cosf 0 0 1

the group action is [12, Ch. 3 §16]

e’% 0 cos? isin? e’% 0
_ 2
Zu(g(¢767w)) + 0 e_lg < ZSZTI% COS%‘Q > 0 e—i%

o+ .. =
cosge’ 2 zsmge’ 2
= b= ot | -

Thus p : SU(2) — SO(3) is an onto group homomorphism that completely characterizes the universal covering
map of the rotation group SO(3). As before, in the Lie group formulation, Eq. [, we let II = o Lo ¥4(g) 0 0g act
transitively on the SO(3)-space S?, for g € SO(3). Let & be chosen such that x = TI¢ = oy ' oX(g(de, db, dy))) ooy,
for g(de¢,dd, dip) € SO(3) an infinitesimal rotation. Hence, II = ¢! € G := Aut(C) inherits a manifold structure
from SO(3), and thus we can treat IT as an element of a Lie algebra g such that the Lie bracket of g is given by
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the matrix commutator [X,Y] = XY — Y X with the Lie group generated by the exponential map exp : g — G

A~

for G = Aut(C),

1
II=ecxp (00_1 o Ys(g(do,db, dy)) o 0'0) = Z o (00_1 o ¥s(g(de,d,di)) o ao)k

k=0
— I+ 07" 0 %y(g(d, b, d)) 0 79 + O (05" © Tulg(ds, 6, dv)) 0 o0)°)
~ I +0y" 0 S(g(dg,db, di)) o oy,
to first order linear approximation for ¥4(g) C SU(2), such that Eq. [[ becomes

oi(x) = / e=im(E€logM e, / ¢~ i€ Elog I+ 165 (9(d6.d0.du))o00)
0X; 0X;

(8) J . J
) — )

:/ ””€MW“°&MM“WWWWw:/ (I + 03" 0 Z,(g(de, db, dvh)) 0 o)~ p*e.

0X; 0X;

Note that the exponential mapping restricts to a diffeomorphism from a neighborhood centered at 0 of g to a

neighborhood centered at e of G. In particular, the differential (dexp)o : Tog — T.G is the identity map, under

the canonical identifications of both Tpg and T.G with g itself.

5. GENERALIZED THEORY

In what follows, we elaborate further on this condition for a more general class of compact Riemann surfaces
X /T, identified up to a conformal equivalence class of metrics [g], and prove a stronger theorem. As a topological
introduction, the weak topology with respect to the base field K = C on X = X /T is denoted o(X,C). A subspace
for the weak topology is a collection of sets of the form ¢~!(U) where ¢ € X* and U is an open subset of the
basefield C. Thus, a subset V' of X is open in the weak topology if and only if it can be written as V' =, V; each
of which is an intersection of finitely many sets, V; =, ¢~1(Ui;), of the form ¢~ (U, ;).

Let (z;) be smooth local coordinates on the compact Riemann surface (X, g) endowed with a complex structure,
i.e. an atlas Uj(Xj,qu) for V; C X an open subset V; of X, with ¢; : V; — Uj, U; C C an open subset of C
and the globally defined chart ¢ : X — C. We define the map n : X — CP' and show it to be a diffeomorphism
in Section [l Here, X is endowed with a strong topology such that it can be covered by X = Uj n_l(Uj) for
U; € CP*, henceforth, a strict compact subset of CP* such that | J ,Uj = CP! is compact. Likewise, we let X ;X
be a strict compact subset of X with [J; X; = X compact. If (U, ¢ = (21, 22)) is a chart of X for (21, 22) identified
with z1 4+ izo, then a local expression for g can be computed as follows. In the local coordinate system on X, given
by the real-valued functions z1, z2 (we use covariant indices only for later convenience, where this notation bears
no geometric meaning in this context), for the coordinate vector fields {8%1, 8%2}, {dz1,dz} are the dual 1-forms.
For p € U and u,v € T, X, we can write

0
By letting g% (p) = 9p ( a‘zi, a%j) and using bilinearity,

o 0 i
gp(u,v) = Zuz‘vigp <8_z’ 8—2]> = ZQ ! (p)uv;.
irj ! irj

It follows that the metric is simply

0
and v = Vi

p

g= Zgijdz,- ®dz; = Z gijdzidzj = Edz% + 2Fdz1dzo + Gdz%,
i,J i<j

the fundamental form on X, where F = g11, F = ¢g12, and G = g9 for

1= (% &)

the rank 2 metric tensor defined on the complex manifold.



10 SERGIO CHARLES

Let X denote the universal cover of X, for which p : X — X is a universal covering map. In particular, the
local coordinate w € X is the linear combination w = z; + ize and z = z1 + izg € CP'. As before, consider the
functional o;(x) € (Q(LO)(X))* defined by

o;(x) = /a e

for the globally defined smooth map 7 : X — CP! (we assume this to be a diffeomorphism by hypothesis) with
nw € MQIO(X) and w € MQLO)(CP) > Q((Clﬂﬁ)(logD) a meromorphic (1,0)-form w = gdz (where g : C — C
is a meromorphic function and g : C — CP! is analytic). Here 0X; is a rectifiable Jordan curve, lifted onto X
by the inverse mapping ™!, such that supp > p_; [2j.6 — 2jk—1| < +00, for 0X; given parametrically by z;(¢) on
the interval a < t < b where P = {to,...,t,} is a partition of the interval [a,b]. Likewise, (T'X x TX)* 5 (£, x) :
TX xTX — C is the standard Hermitian inner product, i.e. a positive definite symmetric bilinear form, defined
locally on X (or rather pointwise (&, x) p TpX xTp,X — C) and D is a divisor of C with simple, normal crossings
for which D := " D,. Here the D, are smooth, irreducible, and mutually transverse components. By Stokes’
theorem,

' ; 0 , O
ai(x) = / e_m<§7x>77*w = / 9(77)6_”<5’X> a—ndzl + g(n)e_m<§vX>a_77d22

22
ON oM
= M(z1,29)dz1 + N(z1, 29)dzs = / (— - —> dz1 N\ dzo = / hidzi N dzo
an \0z1 Oz 0X;
where hyg = g—i\lf o M for obvious notational reasons subject to the discussion of Lie representations. Furthermore,

let F'dzy N dzy = d(z on) Ad(Zomn) =dnAdn for F defined sectionally on X, which behaves locally like the total
product space n~! (21 x Zo) = n_l(V) C X, a local fiber bundle, and (21,22) € Z1 X Zy. Thus, fXj hidz N dze =

fXj n"g(n)d(zon)ANd(zon) if g(z) = an. Under such a substitution, fX “Ld(zon)Ad(zon) fX_ hidzi1 Adzs or

/ng( )d(zon)ANd(zZon) = // *(2"g(z)dz A dZ) // 2"g(z)dz N dz.
XJ I(UJ UJ

By Theorem [34], it follows that if §(n) € £(X;) C £(X) does not have compact support, there exists no f € £(X;)
which satisfies 0 f /877 = ¢ having compact support and [ [ X, n"g(n)dn A di # 0 for all n € N. Therefore, 1f

z)dz NdzZ = n™g(n)dn A dij # 0 then there exists no solution f(n 9(77 dn A dn*
U; X; X;

havmg compact support As such, 1f this hypothesis is true, that is if g € £(X;) does not have compact support
by g(n) = 1/n™ under the assumption hg = F' in the below, then f € £(X;) cannot have compact support. In

for the section F' defined in terms of z € CP!. Invoking Lemma [3.5]
)://—g*(" )dn*AdF:/ dw
n—=n
X; X;

is a solution to ajf = g, wherew := <f 9(n )dn >dﬁ Moreover, dw = 6%* <f g("*)dn*)

particular, let §(z) = an(z)

n*—n

9(n") dn*> i

dn* = g 9(n )dn A dn*. Tt follows that

:/ dw:/ w:/ <
X; X;
// dn*dn*.
ax; M —n

Using the property z*z* = [z*|> on the C-algebra, dnp* = (2 - @Lﬁ) dn* = ¢(n*)dn*, or the inner complex
contour integral becomes fan qb(n*)%dn*. Let G(n*) be defined as G(n*) = ¢(n*)g(n*), then the integral
becomes faX g(f)dn* = 2miG(n) for G(n*) defined locally in X;. As such, f(n) = 2mi [ G(n)dn*. To ensure
/ fX n"g(n)dn Adiy # 0, we let hiy = F, then g(n) = 1/n™ and f(n) = 2mit52 :5’(77) In particular, we can compute hg

and F as follows, d(zon)Ad(zZon) = dnAdij = [8—2"161731 + g—ZZdZQ] [621 dz + gg;dz } = [g—zzg—zz - gznz gzﬂ dz1 Ndzy
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for F := g—zg—zz 88;72 gg , where 7 := 1(21, 22). The integral of the meromorphic (1, 0)-form w over the 1-cycle oU;

« on on
ouU; X X 21 22

Then, by Stokes’ theorem, the linear functional o;(x) becomes

/ 9(n(z1,22))e =N <@> dz1 + g(n(z1, 22))e” ™ EX) (@) dzs
9X; 821 )

0 - 0 0 - 0
= /X P <9(77(Z1722))€_m<5’x> <8—:2>> S <9(77(Z1,Z2))€_W<£’X> <8—;71>> dzy N dz.

A simple computation shows that this expression reduces to

ﬁ i —im(€,x) _ @ i —im(€,X)
/Xj [<3z2> (321 <ge ) 021 0z (ge ) dz1 A dz
= ﬁ —i —im(€,x) 877 0 —im{£,X)
B /)\(j |:<8Z1> < 622 <ge ) 622 82;1 (ge > le N dZQ

for g(z) = % Thus, by comparison of F' and hf, to impose the condition of equality, we let 5—2 = —aizl (ge_”<fvx>)
on —T on —T — —T on —T

and 8_2772 = —ain (ge ? <§7X>) For 77 — —a;gl (ge ? <§7X>) , = —ge ? <§’X>+,8(22) and for D2 — _aiZz (ge 'Z <§7X>) ,

the solution is 7 := —ge —im (&, X> + a(z1). The two solutions must coincide, meaning that 7 := —ge~imEX) or

n = —gei™&x) = —geimXf) by the property of the Hermitian inner product. Such a diffeomorphism uniquely

defines an equivalence and by extension, the complex manifold, X, itself.

6. PROGRAM FOR GENERA AND ISOTHERMAL COORDINATES

We first prove that the Riemann surface X is of genus ¢ = 0 by invoking the Gauss-Bonnet theorem from which
it follows, by the uniformization theorem, that X is holomorphically isomorphic to the complex projective line
CP!. For X a compact two-dimensional (complex one-dimensional) Riemannian manifold with boundary 0.X, let
K be the Gaussian curvature of X and k, the geodesic curvature of 0X. Then, by Gauss-Bonnet,

/ KdS+/ kgds = 2mx(X)
X X

where x(X) is the Euler characteristic of X, dS is the area surface element, and ds is the line element. Note,
it is assumed that X is a compact manifold; however, this property is proved in the latter geometric analysis

[Section [I0], namely u(X) = p <U] Xj) > M(Xj) < 400 is a finite measure and X is the disjoint union of

complex non-singular algebraic curves (for X = CP! is shown to be true). Given that X is a compact Riemann
surface without boundary, the latter integral can be omitted such that 2wy (X) = [  KdS. Consider a Monge
patch F : U — R3 D X for X a compact Riemann surface, embedded in the ambient space R3, equipped with
a Hermitian inner product and U C CP! compact. More generally, let F' = F(z,29) for n(z1,22) = —ge_”<5”<>
and the Hermitian inner product defined as (£, x) = &x. Thus, F(z1,22) = (Re w,Im w,w) = (x1,22,21 + iz2)
for Re w = 1, Im w = x9 and w := 21 + iz2. Let —g := ®(21)O(z2), where (&, x) is independent of the local
coordinates (21, 29), and ®(z1) = w(21)e’**), O(2y) = k(22)e"?(2). Let T': R — R be a linear transformation such
that z9 := I'z1, inducing a linear transformatlon of coordinate vector fields on the tangent space T, X, -2 o = 8%2.
Thus, k(22) = k(Tz1) and 7(z1, 22) = (21)O(2)e™XE) = (21 ) g (29)eP2) el = (21)e ’[a(zl)+5(zz)+0”]
where |n| = ¢(z1) is a real-valued function expressed purely in terms of z;. As such, 7(z1, 22) = ¢(21)cos(a(z1) +

B(z2) + C’7T + ig(z1)sin(a(z1) + B(z2) + Cm) with 21 = Re n = L1 = ¢(21)cos(a(z1) + B(z2) + C) and zy =
Imn= = ¢(z1)sin(a(z1) + B(2z2) + Cm). For every coordinate system ¢ : X — C and a,b € X the relation
[osx((e1)a ) gp*((eg)a)] = J1y(q) holds if and only if [p«((e1)s), v«((€2)s)] = pyp@)- If ¥ = p(a) then for every a € X,
the orientation p, = [p«((€1)a), p«((€2)q)] can be chosen consistently such that X is orientable. Consequently, the
Riemann surface X can be parameterized in terms of z;, ¢ = 1,2 as

@(z1)cos(a(z1) + B(z2) + Cr)
F(z1,29) = | ¢(z1)sin(a(z1) + B(22) + Cm)
Z1 + 129
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Similarly, note that |n| = ¢(z1) such that z; = ¢~ (|n ]) for ¢~! admitting a continuous inverse, and likewise

N
argn = (¢~ (Inl)) + B(z2) + Cm or B(z2) = argn — a(é™*(|n])) — C for zo = B~ (argn — a(¢™!(In])) — Cr) if B
admits a continuous inverse. Therefore, with z; = ’H'T" and xo = _2.77, the parameterization can be given globally

in terms of 1 as

(n+1m)/2
) Fm=1{ =2 :
¢~ (Inl) +iB~ (arg n — a(¢™(Inl)) — C)
The coefficients of the first fundamental form may be given as E = ¢g11 = (F,,, F%,), F = ¢12 = (F,,, F%,), and
G = goo = (F,, F,) where

i2cos(a(z1) + B(z2) + Om) = ¢(z1)sin(a(z1) + B(z2) + Om) 4= —¢(21)sin(a(z1) + Blze) + Cm) 32 =
F, = j—ism(a(zl) + B(z2) + Cm) + ¢(21)cos(a(z1) + B(z2) + Cﬂ)j—z yFoy = | d(21)cos(a(z1) + B(z2) + C’7r)dz2
1 1

2 2
such that £ = g1 = (F,, F,,) =1+ (%) + ¢%(21) (d—o‘) JF =g190=(F,,,F.,) =i+ ¢2(21)£§%, and G =

dzy

go2 = (F.,, F.,) = ¢*(21) (dﬁ > — 1. It follows that after expansion of the terms E, G, F, the Riemannian metric
can be given locally as

2
g=ds® = (1 + <5(i> + ¢*(21) (j—i) ) dz? +2 (z +¢2(21)5ﬁ ji) dz1dzo
2
- <¢2(21) <3_i> - 1) dz3.

Likewise, the Gaussian curvature is given by K = EG F2 where E = g1 = (F,,, F.,), F = g12 = (F,,, F.,),
and G = goa = (F%,, F,,) are coefficients of the first fundamental form and e = (N, F, ), f = (N, F.,,), and
g = (N, F,,,,) are coefficients of the second fundamental form, where N is the normal vector N = F,, x F,,. A
simple calculation in the standard basis gives the second order partial derivatives,

2
F, . = <Mcos( (z21) + B(2z2) + Cm) — 2—¢d—sm( (21) + B(z2) + Cm) — ¢(21)cos(a(z1)

dz3 dz dz
a\? 20 42
#8(e2) +.Cm) () = oten)sinfo(en) + Aea) + Om) . Tsinla(en) + 4(e2) + O
2
+ 25_25_;@03( (21) + B(z2) + Cm) — ¢(21)sin(a(z1) + B(z2) + C) <5—Z> + ¢(z1)

2o
cos(a (z1)+5(22)+C7T)2 7" >,

—p(z1)cos(a(z1) + B(z2) + Cn) (;—2)2 — @(z1)sin(a(z1) + B(z2) + Cm) L2

d%
F,,., = od(z1)cos(a(z1) + B(z2) + Cﬂ')ég- — ¢(z1)sin(a(z1) + B(z2) + Cn) <d22>
0
and
—%%Sm( (21) + B(22) + Cm) — (25(21)%%608( (z1) 4 B(z2) + C)
Fp., = d—i%cos( (21) + B(22) + Cm) — ¢(z1)%£sm( (z1) + B(z2) + CT)

0



MEROMORPHIC FORMS 13

Furthermore, the normal vector IN to the orientable Riemann surface X with induced orientation du is given by
N = OF X OF

— Oz 0z2
- <ij_ism(a(z1) + B(22) + C7) +ig(21)cos(a(z1) + B(z2) + Cﬁ)j—z — @(z1)cos(a(21)
+ Bza) + Om) il )sin(a(a1) + Blz) + Om) 3 — i3 cos(alz1) + B(zz) +C)
‘ g d¢ dp
— ¢(z1)sin(a(z1) + B(z2) + CW) ’¢( )dzl dzz)

Lastly, we calculate the coefficients of the second fundamental form, which can in fact be expressed as e =
(N,F. ), f=(N,F,.,),and g= (N, F,,,,) with

= () (&) o0 () (%) o0 () + o0 () ()
—z¢(z1)<jjl> <E> i(z )(ji) <d—zl>2sin(2a(z1)+25(zl)—1—2770)
o (ji> <d21>’
o= -iota) (42 (55) ~ioe (42) (2] + e (2

P () (22) i (42 () e (22) ()

Thus, the Gaussian curvature K is given by %_f;

2 2 dg\?  (do\? [ dB\? [da)? do d8 da
o mo-r=se|(2) - (2) (2) - (B)]- () =i

Consequently, if we impose the condition [[ KdS = 2rx(X) = 4r or
X

K K
/ —dz Ndzy = / —dzdzg = 47
xn xn

for 7 the unit normal vector to X, then the Riemann surface X must have genus g = 0, implying that it is a simply
connected, complex manifold. If the map 7 is in fact biholomorphic, then we have proven that X is diffeomorphic
(i.e. holomorphically isomorphic) to CP!. In particular, every Riemann surface is the quotient group of the
universal covering by a discrete group, such that X = X JT for X = CP' the universal covering of X and T the
set of deck transformations Aut,(X) acting transitively on X, for a universal covering map =1 = p: X — X the
identity. Therefore for all purposes, conformally equivalent Riemann surfaces can be identified with one another
(i.e. they are identical).

and

[see Appendix[Al for an explicit calculation], for

7. BIHOLOMORPHICITY

The map 1 : X — CP! given by 71(z1,20) = ¢(z1)e!l@G)T8(E)+700] s a bijective holomorphic function (a
biholomorphism) if and only if the Wirtinger derivative with respect to the conjugate local coordinate vanishes,
that is if % = 0. In particular, let n € T'(A°(T* X)) for I'(A") sections over the structure sheaf Ox of holomorphic
functions on X. Then n € Oy if and only if the Wirtinger derivative with respect to the conjugate of the local
complex coordinate w = 2z + iz vanishes. Recall that the Wirtinger derivatives are defined as linear partial

differential operators of first order, such that 8% = % (%1 — i%) and % = % (aizl + i%) . Then
O _ 9 ifa(z)+B2) 4708 4 g 1) D gilaler)+B(z2)Fr(x.8)]
821 N le ¢ + Z¢(21) le €
and 5 .
9n _ . 2F Jila(z1)+B8(z2)+m(x.€)]
622 ’l(b(Zl) dZQ e N
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The Wirtinger condition then becomes

o o 4B\ _
P tioten) (g 4 i) =0

which yields a solution |77| = M~ "O‘(zl)e“@. But ¢(z1) = |g| > 0 a priori, and thus the chart is biholomorphic if

and only if ¢(z1) = Ae™ @22 g —io(z1) for A\ € C, choosing the positive branch.

The calculation for Gaussian curvature K in the above is rather tedious, when indeed under certain isothermal
coordinate conditions this expression may be simplified considerably. We now develop the metric theory of the
complex manifold to obtain precise expressions for the Gaussian curvature K. The Riemannian metric on X is given
locally as ds? = Edz? +2Fdz dze + Gdz3. In complex (local) coordinates, it assumes the form ds? = \|dz + udz|?,

for A = % (E +G+2VEG — F2> , = (E'—G+2iF)/4) such that A and p are smooth, satisfying the conditions
A > 0 and |p| < 1. For isothermal coordinates (u,v) the metric has the form ds? = p(du? + dv?) for p > 0 smooth.

o . . . 2 |2 .
Likewise, the complex coordinate w = u + iv satisfies p|dw|> = p ‘%—f ‘dz + Z—zdz‘ . That is, (u,v) are local

isothermal coordinates if and only if they satisfy the Beltrami equation %—lg = ,u%—l;’, i.e. the equation gives rise to

a diffeomorphic solution. Recall that the metric is given locally on X by

2 2
g=ds* = (1 + (jﬁ) + ¢%(21) (j—i) ) dzl +2 (z —|—¢2(z1)jﬁ ;la) dz1dzo

- <¢2(z1) <5—i>2 — 1) dz3.

If (21, 22) are local isothermal coordinates then the Riemannian metric assumes the form g = ds? = ¢(dz3 + d=3),
where @ is a smooth C'°°-differentiable function; that is, the metric is conformal to the Euclidean metric. Therefore,
we consider the case for which F' = g9 = go1 = 0 and £ = G, for g conformally equivalent to the Euclidean metric,
such that the metric tensor is a positive definite symmetric rank two tensor

[9i5] = < g g > = E (o]

2
for det[g;;] = E%. Then F = 0 if and only if ¢?(z )dﬁ do _ _; Similarly, F = G if and only if 2 + (;—z) +

dzo dz1
dz1 dzo dz1

*(21) [(d_a)z _ <ﬁ>2] =0 with £ =1+ <d¢> + ¢*(21) <%>2. As such, if these conditions are satisfied

2
and if we define I' := F =1+ ( d21> + ¢%(21) (%) then (z1,22) are necessarily isothermal coordinates and

[(d2?+dz3) € [g] = {g|h = A2h for A a smooth real-valued function}. In isothermal coordinates, the Gaussian
curvature takes the form

1
K= —§e_logrAlogF.

1 0?p  9%p
K= _—¢P ar
2¢ <a 2+ az§>

given that the following set of differential equations are satisfied:

dp do . d¢ ? da\* 4
(11) Ce) oy 2t <d—21> et Kd_zl) <d22> ] '

Therefore the condition of genus g = 0 reduces to

1 Ap 1 Alogl’
(12) X(X) 477//epd5 477// T
X X

In isothermal coordinates, the calculation of Gaussian curvature is reduced significantly to

More precisely, if we let p = logl", then

1 —logl" 8 82
K= —5e g <8 5logl’ + aZglogf
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[see Appendix[A]. The passage of isothermal coordinates (21, z2) can also be realized for the global parameterization

(n+m)/2
F(n) = (n—m)/2i
“Ynl) + B~ Harg n — a(¢(In])) — Cn)

by computing the coefficients of the first fundamental form E, F,G in terms of 7. Under the assumption that

(21, z2) are local isothermal coordinates for X, the Beltrami equation is 27 = i where 271 ( oz T4 622) = 0 for

uw=(E—G+ 2iF)/4). Tt follows that (z1,22) = 21 + iz are isothermal coordinates prov1ded E—-G+2F =0.
This is equivalent to the coupled set of differential equations Eq. [I1]

dp\* da\* [(dB\® . dj da
— — ) = — 21— =0,
<d21> * ¢ (Zl) le dZ2 + dZ2 dZ1
obtained without invoking the Beurling transform to solve the Beltrami equation. More precisely, the partial
differential equation %19 = ua— is the the Beltrami equation for w a complex distribution of the complex variable

z defined in an open subset U C C for pu a complex L (U)-function of norm less than unity [11, Pg. 314-317]. In
particular for U C C, the Riemannian metric X assumes the form

g = Ed2} + 2Fdzdz + Gdz3

with the Beltrami coefficient
B FE -G+ 2iF
N EfG12V/EC -2

satisfying the norm property

(13)

i E+G-2VEG P
M Erc+2VEG - 2

We now obtain a property on sections g € MQ(©:0) ((C]P’l) by imposing the condition of isothermal coordinates
(21, z2) by the following constuct: With respect to the global parameterization Eq. @ for the local complex coordi-

nate w on X, w = ¢~ '(n]) + 87 (arg n — a(¢~'(In])) — Cm) = ¢~ () + B (—arg 7 —1Oé(¢_1(|77|)) : 077)
= |7 o= — dw _ do”t At d 5 _da dé”" 7\ _ doT_
for |n| = |7 and arg 7 = —arg n. Therefore, o7 = d \nl +iT \ &I N - T ) T |77\ +
1
3

4B~ _‘_i_ﬁ_d_ad¢_’1_> < _1) _do ! 4 dft <___'_d_ad<L£>
I <77 w7~ ot dmr ) dn”g n=i(pk - 5)- Likewise, g7 = Gor i+ (5 — 5 — @)
Then the Beltrami equation ?977 = ua—n reduces to

1 do~ !, dp! <<1 u) i da dp=' 1 _ >
— = (- B ) e — () - — —— — (7 — =0,
Il din| (= pm) 4 as \"\7 * n n|? (1= um) do=t din| |n (= um)

which is satisfied by the sufficient condition —% = %, namely —n? = 72 if and only if ¢> = —g°. If the sufficient

condition g? = —g? is satisfied then the Beltrami equation holds, meaning that (z1, 29) are isothermal coordinates.
This simplifies the condition of g = 0 to

1 Ap ., 1 Alogl' | .
X X

yielding the following theorem:

Theorem 7.1. If the sufficient condition g°> = —g° is satisfied for g € MQ(O’O)(C]P’l), then the Beltrami equation
is satisfied and (z1,z2) must necessarily be local isothermal coordinates on X, such that

1 Ap 1 Alogl' |
- V=L [[ g L et
X X

implies that the Riemann surface has genus zero.
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8. QUASIDISTRIBUTIONAL ANALYSIS

We now give an interpretation of the complex local coordinate distribution w in a quasi-distributional sense. In
particular [2| Pg. 65],

Definition 8.1. If f : D — E is an orientation preserving homeomorphism between two open sets in the complex
plane C, and if f is continuously differentiable then it is said to be a K-quasiconformal mapping if the derivative
of f at every point maps circles to ellipeses with bounded eccentricity K.

That is, for the complex local coordinate w = 21 + 29 and for 2’ = xy + izy, suppose w : D — E for z;, 1 = 1,2
coordinate functions variably dependent on other complex coordinates z = ¢ for ¢ : X — C. Then if w is assumed
to have continuous partial derivatives, w is a p-quasiconformal mapping provided it satisfies the Beltrami equation

ow ow
16 ()=
(16) L = ()5
for a complex-valued Lebesgue measurable yu satisfying the norm condition |u[?> < 1 or sup |u| < 1. Such a
quasiconformal theory has a geometric interpretation. If we equip D (identified with an open subset of X) with

the metric
(17) g = ds* = Ed2? + 2Fdzdzg + Gdzi = N¢)|dd + p(d)ds|?,

for A > 0 and |p| < 1, then w satisfies Eq. if and only if it is a conformal transformation from D, equipped
with the metric given by Eq. [T, to the domain E equipped with the standard Euclidean metric. In the above
analysis, we treated w = ¢ = z to verify the assumption that (21, z2) were isothermal coordinates, such that D was,

itself, equipped with a Euclidean metric if and only if one of the following conditions was satisfied: g = —g? for
2 2 2

g € MQOO(CP) or (%) + ¢?(21) [(g—;) - (%) + 21’5—2 g—;} = 0; that is, the Beltrami equation reduced to

on _

g7 = H(2). For isothermal coordinates (z1,22) the metric assumes the form ds? = p(dz? + dz3), where the complex

2
variable w = z; + 29 satisfies p|dw|? = p|wy|? ‘dw + g—gdw( = p|dw + wgdw|?, which relative to the Euclidean

metric dzdz = dwdw has eigenvalues
2

2

_ - 2
ol =1 (= )? |

The repeated eigenvalues correspond to the squared distance of the major and minor axis of the ellipse realized
by pulling back the unit circle along w. Thus, w is u-quasiconformal, where p = 0 is the condition for (21, 22) to
be isothermal coordinates. It follows that the dilatation of w at a point z = w is given by

(18) (1+ |u[*)?

1+ |p(2)]
(19) K(z) = —— =
1—|p(2)|
Furthermore, the essential supremum norm of K is
1
(20) K =sup |K(z)| = L [liloe = 1.
€D 1 —[|pl]o

This complex distribution satisfies the Measurable Riemann Mapping theorem,

Theorem 8.2 (Measurable Riemann Mapping Theorem). For u(z) a bounded, measurable function with z € C
and the L>®-norm ||p|lec < 1, there exists a quasiconformal homeomorphism that is a solution of the Beltrami
equation

of _ n%f

(21) S = ()5,

where f has fized points 0,1, and oc.

9. HODGE THEORY

In this section we analyze the genus condition of [y e I ApdS = —8r or Ix eIt Ap 4 5dS = 0, whereby
we let % S ydS =1 and k = 8. Recall that the area of the Riemann surface is given in terms of the coefficients of
the first fundamental form; that is, ¥ = [[VEG — F2dz;dzy. Let the Hodge star operator x : A¥(V) — A"~k (V)

X

be an isomorphism from the k-th exterior power space to the (n — k)-th exterior power space, such that the
composition with itself maps x o : A¥(V') — A*(V). The former space A*(V) has dimension (}), while the latter
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A”_k(V) has dimension (nﬁk), which are equal, inducing an isomorphism. The Hodge dual operator induces a
natural nondegenerate symmetric bilinear form (i.e. an inner product) on the exterior power space of k-vectors,
i.e. on the exterior algebra A(V'). Let n and ¢ be two k-forms, then ¢ A %1 = (¢, n)w for w the normalized n-form
(whereby w A w = w) [3]. The normalized n-form is simply the volume n-form for a Riemannian manifold, i.e.
w = +/|det[gi;]|dz' A ... Adz™ in local coordinates z° for [g;;] the metric tensor on the manifold. For the Hodge
star applied twice x o« : A¥(V) — A¥(V), we define the identity element up to sign, x x 7 = (—1)¥"=k sy for
s = sgn(det[g;;]) with n € A*(V) and V an n-dimensional space. Therefore, the inverse of the Hodge star operator
can be defined as

(22)

1 AR(V) = AR (1)
n = (—1)FRgup

We hence define the Hodge dual of a differential k-form in the cotangent space of an n-dimensional Riemannian
manifold.

Definition 9.1. For n and { both differential k-forms of the cotangent space of an n-dimensional, orientable
(pseudo- ) Riemannian manifold, *n is the unique differential (n — k)-form such that

(23) nA*C = (n, Qw

for w the differential n-form. The L? inner product of differential k-forms can be defined in terms of the Hodge
dual as

24 =
(24) (7,€) /M nA*¢
for m and ¢ both k-forms in the section QF(M) := T'(AF(T*M)).

Lastly, to fully develop the theory, we define the codifferential of k-forms. In particular for d : QF(M) —
QF1(M), the codifferential 6 : QF(M) — QF~1(M) is defined as § = (—1)"*D+ls 5 dx = (=1)¥ x~1 d * . In fact,
for ¢ a (k+ 1)-form and n a k-form,

(25) /M d( A xC) = /M<dn A*C— 1 AR D)ED 1 e ¢) = (dn,¢) — (1,60) = 0,

such that the codifferential is the adjoint of the exterior derivative, i.e. (n,d¢) = (dn, (). The above integral is zero
for M of empty boundary or with 1 and *( assuming zero values on the boundary dM. Consider the condition
on genera, | X e I Ap + $+dS = 0. Then the area element is given by the modulus of the exterior product,

dS = |dzy Ndz| = %dzl Adzg = %(da ® dzo + I) where the exterior algebra is generated by the
tensor algebra T'(V') quotiented by the two-sided ideal, formed by elements a ® « for a« € V, A(V) = T(V)/I
for a A = a® + I. As such, let the unit normal vector of the Riemann surface X at (z1,22) be given by

7 := ®(z1, 22), for which

—logl' A K YAp+Tk
26 —logl A fdsz/e P dz Ad :/7d Adzy = 0.
( ) /Xe p+ by X @(21,22) + E(I)(Zl,ZQ) A1 2 X FE(I)(Zl,ZQ) A1 2

Likewise, let
/ YAp+Tk
X

del VAN dZQ = /){ d(T] /\*C) =0.
Then let w = n AxC = (n,¢)w for n a k-form, ¢ a (k + 1)-form, ¢ a (n — k — 1)-form and w € T(A%™V (T* X))
where dimV = dim(A"*~1 (V) AA¥(V)) =n —1 =1 for n = dimpX. Suppose
YAp+Tk
dw = d(?? /\*C) = del VAN dZQ,

then let w = fdzs such that the exterior derivative becomes g—idzl ANdzg = %da A dz9 or

of YAp+Tk

6—21 - FE(I)(Zl, ZQ) '
Consequently, the solution is of the form

YA r
(27) f(z1, 22) :/sz;ﬁ)da + W(22),
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the potential corresponding to dw € T'(A™(T*X)) = T'(A?(T* X)), where
YAp+Tk YAp+Tk

2 = = _— v = _— v
(28) w=nNA*C (/ I‘E<I>(z1,z2)dzl + (z2)> dzo </ FECD(zl,zg)le + (Z2)> A dzo
Recall that n A x¢ = (n,{)w for n a k-form, ¢ a (k + 1)-form and @ a (n — 1)-form for x¢ a (n — k — 1)-form. As
such, n = 2, and for k = 0, ( and % are both 1-forms. Therefore, we let w = f A dzo = n A *(, *( = dzo. The
Hodge dual of ¢ is x( = —i¢ or ( = i x( and { = idze. To invoke the adjointness property (dn, () = (1,9¢), we
first calculate the corresponding terms. Note that

YAp+Tk
= = _— \I’

such that the exterior derivative of 7 is

YAp+Tk ov 0 YAp+Tk
dp=—"C""" —— P Ty ) d
1 FE@(Zl, Zg) A1 <622 + 622 FE@(Zl, ZQ) Zl) 2
YAp+T(z1)k ov / 1 0%p 0P K 0P
= d — _— e _—dz|d
F(zl)ZtI)(zl, 2’2) act 822 * F(I)2(Zl, 2’2) az% 82’2 2(132(21, 22) 822 “l 2

for ' =T'(z1), Ap = AlogT'(21) solely dependent on the first local coordinate z1, and X, k € R constants. Likewise,
for ¢ = idza, 6¢ = §(idzy) = id(dzy) = — + 1 d(dze) = 0. Noting that the L?-norm for differential k-forms is
(n,¢) = fX 1 A x(, the inner product

SAp +T(z)k ov 1 9?p 0P K 0d ,
<<F(21)Eq)(21,22)dZ1 + (8—Z2 B / F<I>2(z1,z2) 6—2%6—22 + E<I>2(z1,zQ) 8—Z2dZ1 dZ2 ,Zng

=0
becomes

YAp+T(z1)k ov 1 8p OB kO . -
/X <F(z1)2<1>(zl,z2)dzl + <8_z2 B / T32(21, 2) 022 023 T T3 a—@dzl dzg | A *(idz) =0,

or for x(idzy) = dzo

EAp + D(z1)k oV / 1 800 | K 0P
/X <F(21)E‘I)(21722)dz1 " <522 LP2(21, 22) 022 D29 s 8z2d'z1 dg | Adz
_/ YAp +T'(21)k
x T'(21)X® (21, 22)

which induces a tautology, as asserted. A weaker condition can be imposed by simply observing that if Ap =
2
90 > 0 for p = p(z1), then

2
027

dz1 Ndzy =0,

/Xe—logFAp+ %dS _ /Xe—logFAp-|- % ]dzl /\dZQ’
(29)

= / ‘e_lOQFAp + gdzl A dzg‘ >
X

Therefore, g = 0 means that the Riemann surface X is simply connected, corresponding to the first singular
homology group being

/ e_logFAp + %dzl ANdzo| = 0.
X

C ifk=0,2
30 Hi(X;C) = T
(30) kl ) {O otherwise.
We obtain the following theorem.
Theorem 9.2. The singular homology groups assume the form

C ifk=0,2
31 H,(X;C) = T
(31) l ) {0 otherwise
if and only if the condition for g = 0,

SAp +T(2)k
29 dz1 Ndzy = 0,
(32) /X [(21)S® (21, 22)

in isothermal coordinates (21, z2) is satisfied.




MEROMORPHIC FORMS 19

10. PROJECTIVE GEOMETRY AND COMPACTNESS

Furthermore, the Riemann surface X can be realized as the universal cover by the quotient of a free, proper
action of a discrete group, say I'. In particular X = X/I" for I' the group of deck transformations Aut,(X) acting
transitively on the space X under the universal covering map p : X — X (the identity). We have now shown

that if ¢(z1) = Ae™ a2 dzz —iel) for A e C (condition of biholomorphicity) and [y %da A dze = 0 for

g*> = —g? (condition of genus zero), then, by the uniformization theorem, the universal cover X (and by extension
the Riemann surface X for p the identity) is necessarily holomorphically isomorphic to the complex projective line,
that is X = CP!. Thus, the Riemann surface X and the Riemann sphere CP' can be identified with each other.
By the definition of X, §(n) = 1/n™ and f(n) = 2miLtH7? :f( 7 As such, g does not have compact support on a compact
subset X; C X (unless n has a dense set of poles in X, of which there are only finitely many for otherwise 7
would be constant, contrary to hypothesis), and by extension f is never of compact support for the biholomorphic
map 7, defined locally on X satisfying the Wirtinger derivative condition. To guarantee that f never has compact
support, we impose the condition that |n(z1,22)] = |¢(21)| = |g] = |g] < M for all real M > 0 sufficiently large
(where ¢(z1) was defined in Section [6) and the globally defined chart ¢(z1,22) = 21 + izg € C. In particular,
SUDg:—(z1,22)|9] < +00. It then follows that ffn g(n dn/\dn—ffz g(z)dz NdZ = oj(x fa eI EX)g* 0y £ 0;

J J
that is, o;(x) is not of compact support unless w = 0, meaning that fan w = 0 by Theorem B.2] as was to be

shown. Let Q%’O) (logD) 5 w = ]}(( )) dz be a logarithmic (1,0)-form for D € X a principal divisor, w a holomorphic

(1,0)-form on X — D, w singular on D, and f analytic on I(0X;) except for poles in I(0X;) at finitely many points
bi, ..., b,. Moreover, suppose f has zeros at finitely many points ar, ..., a,, in I(0X;) but none on 90.X; itself; that
is, f : X — CP! is a non-constant meromorphic function. Then since §X ;j is a closed rectifiable Jordan curve, by

the argument principal,

1 'z /

: ap— > Br=0,
2mi ox; f(2) T 2mi ox; kzl Z

where a4, is the order of a; and B; the order of bg. That is, on a compact Riemann surface X of genus g = 0,
isomorphic to CP!, every non-constant meromorphic function f : X — CP! has as many zeros as poles, where
each is counted according to multiplicities. Therefore, we have proven the following strong conditions.

Theorem 10.1. If fX e 9 ApdS = 0 for a Riemann surface X of genus g = 0, and if X = CP' for X
given parametrically in terms of local coordinates (z;) by the diffeomorphism n : X — CP' with n(z1,22) =
—G(n(z1, 20))e™XE) and SUPg— (2, ,25) [9] < 400, then faU w =0 and fax n*w = 0 necessarily for w € MO (CP!)

and n*w € MQLO(X) meromorphic (1,0)-forms.

Theorem 10.2. For a compact Riemann surface X of genus g = 0, isomorphic to CP', every non-constant
meromorphic function f : X — CP' has as many zeros as poles, where each is counted according to multiplicities.

In performing these calculations and applying the uniformization theorem, we have assumed that the Riemann
surface is strictly compact. Recall that the Riemannian metric can be given locally as

2 2
g=ds*= (1 + (j—i) + ¢*(21) (j—i) ) dz? +2 (z +¢2(zl);w da> dz1dz

- <¢2(21) <5—i>2 - 1) dz3.

The Riemann surface X is a complex, conformal manifold equipped with an equivalence class of Riemannian
metrics, for which two metrics g and h are identified if and only if h = A2g for A a real-valued smooth function.
In particular, two metrics ¢ and h on the Riemann surface are equivalent if and only if

2 2
h= 2 [(1 + (ji) + (1) (%) > i3 + 2 (z + ¢2(zl)ji j‘”) d21dz

- <¢2(z1) <j—i>2 — 1) dz%}

(33)
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An equivalence of such metrics is the conformal class. The standard metric g = ds? is the restriction of the
Euclidean metric to the Riemann surface X with w = z; + izy for the chart ¢ : X — C. By invoking isothermal
coordinates (z1, z2) above, we showed that such a conformal metric is in fact conformally flat. The conformal class
of g denoted [g] = {A\%g|\ > 0}, which gives a realization of X as a complex manifold, is the collection of such
representatives. To prove that X is indeed a compact, complex manifold, we use the following well known theorem
of Behnke and Stein [1948] that is stated without proof [4, Pg. 81],

Theorem 10.3. Let X be a connected non-compact Riemann surface. Then X is a Stein manifold.

In this regard, X is a Stein manifold if it is holomorphically convex whereby for a compact set K C X, the convex-
hull K = {z € X : |[f(2)| < supwer|f(w)|,Vf € O(X)} is a compact subset K C X. For the diffeomorphism
n(z1, 22) = B(21)0(22)e™XE) = B(21)0(22), let p(z1, 22) = n(z1, 22) — P(21)O(22) = 0. Then for zg € X \ D where
D is the divisor on X for which n: X — CP' is singular, we homogenize the polynomial as follows:

(34) hp(zo,zl,zz) = Z(C)leg( )p <ﬂ, Q) or hp(20,21,22) = Z(C)leg(p) [77 (ﬁ, §> ~ 9 <ﬁ> © (ﬁﬂ .
20 20 20 20 <0 20

By Chow’s theorem, complex projective varieties are automatically algebraic as they are defined by the vanishing
of homogenous polynomial equations. In particular, any compact Riemann surface is a projective variety, i.e. it
can be given by polynomial equations inside a projective space as in the case of hp(ZQ,Zl,ZQ) = 0, which is a
projective algebraic curve. Hence, given that every affine algebraic curve of vanishing polynomial p(z1,22) = 0
may be completed into the projective curve of equation hp(zo, z1,29) = 0, then such a completion Eq. B4l implies
that the Riemann surface is a algebraic curve (algebraic variety of dimension one), for z; = z;(z1, x2). We hereby
invoke the theorem of Griffiths and Harris [6, Pg. 215] that every compact Riemann surface is an algebraic curve.
Therefore, the Riemann surface X must be compact, yielding the following theorem.

Theorem 10.4. The Riemann surface X given by the vanishing polynomial equation

) A0 (E2) -2 (5)e G-
20 <0 20 20
is an algebraic variety of dimension one such that X is necessarily compact by Griffiths and Harris.

For genus ¢ = 0, X is biholomorphic to CP'. Therefore X is a simply connected, compact algebraic variety
of dimension one. This completes the proof of the 1somorphlsm X = CP! for X = CP' the universal cover of
X and T a discrete group acting on X. Hence, X and CP!, an elliptic geometry of positive constant curvature,
can be identified with one another. It follows that X also inherits an elliptic geometry. Note that we associate
to the manifold X its universal cover X = CP', expressing the original X as the quotient of X by the group
of deck transformations Aut( ) for p : X — X a universal covering map, for which an automorphism of a cover
p is a homeomorphism f : X — X such that po f = p. Such a deck transformation permutes the elements of
each fiber of p. If this action is transitive on some fiber, then it is transitive on all fibers such that the cover p is
regular. Every universal cover is regular such that the group of deck transformations Aut(X) = Autx(p) (note,
we omit the explicit reference to X when it is clear from context) is isomorphic to the first homotopy group, i.e.
Aut(X) = m1(X), which is trivial since X is simply connected. Therefore, the topological space X can be expressed
as X := X /Aut(p) = X. If I' C Autx(p) then X = X. For an elliptic Riemann surface X, by the uniformization
theorem, the universal cover of X has to be (identified with) the complex projective line.

11. THE MOBIUS GROUP AND QUOTIENT TOPOLOGY

The Riemann surface X is realized as a universal cover by the Aut(p)-action of deck transformations, an orbit
X /Aut(p) for p: X — X a universal covering map. The automorphisms on X therefore act as automorphisms

of CP' = C as a complex manifold (i.e. a complex Lie group), whereby Aut(C) = {meromorphic bijections f :
a b

C - @} is the Mobius group. For every invertible 2-by-2 matrix h = ¢ 4 ) Wecan associate a Mobius
transformation f(z) = % such that det(h) # 0. Let # : GL(2,C) — Aut(C) be a group homomorphism from

the general linear group GL(2,C) to the group of deck transformations on @, sending b to the transformation
f. Note that 7 is not injective because all nonzero scalar multiples of a given matrix h are taken to the same
automorphism. The kernel of the map is the subgroup of GL(2,C) consisting of all nonzero scalar multiples of

the identity matrix (C\ {0})I = C*I = {)\ < (1) (1) > AeC N # O}. By the first isomorphism theorem, there
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d cz+d
nonzero scalar multiples of the identity matrix is the projective general linear group of 2-by-2 complex matrices,
PGL(2,C) = GL(2,C)/(C*I) = Aut(C) = PSL(2,C). The Mébius group Aut(C) can be given the structure of
a complex Lie group such that composition and inversion are biholomorphic and Lie(Aut(C)) = aut(C) is a Lie
algebra.
Then X = CP! is a Lie group for it can be given the structure of a complex manifold in such a way that com-

g > € Aut(C) = PGL(2,C). Consequently, for

n*w € MQLY(X) a meromorphic (1,0)-form, p := 7 (chosen for standard notational reasons) a diffeomorphism,
v; = OUj a rectifiable Jordan curve in CP! (i.e. a continuous map from the unit interval [0, 1] into CP') and ¢ € X
a point lying over v;(0) = v;(1) (i.e. for p : X — CP' a cover, c is in the fiber over v;(0) € CP!, and p(c) = 7;(0)),
then there exists a unique path I'; = 90X lying over ~; (for poI'; = ~;) such that I';(0) = I';(1), with trivial mon-
odromy action, where X has no ramification points (i.e. X is not ramified). In particular, the degree of the cover
p: X — CP! (that is, the cardinality of any fiber of p) is equal to the index [r1 (CP',~;(0)) : ps(m1 (X,T;(0)))] = 1
for py : m(X,T;(0)) — m(CP', v;(0)). For the genus defined as half of the first Betti number, i.e., half of the
C-dimension of the first singular homology group H;(X;C) with complex coefficients, we obtain the following
result.

is an isomorphism GL(2,C)/(C*I) = Aut(C), {)\ < CCL b >} — f(z) = £ The quotient of GL(2,C) by the

position and inversion are holomorphic maps. Note that 7 o < @

Theorem 11.1. The Riemann surface X is simply connected, such that the first singular homology group H1(X;C)
is trivial and the genus (half of the first Betti number) is, thus, necessarily zero.

The curve I'; is the lift of ; by p. Similarly, since p : X — X, the identity, induces the isomorphism X = CP',
then Aut(X) = Aut(C) = {meromorphic bijections f|f(z) = Zjig, ad — be # 0}. It follows that IT € aut(X) =
aut(CP'), the Lie algebra of automorphisms of the complex projective line CP'. Let &,y € X j and let IT € aut(X') be

an action on the aut(X)-space X, the Lie subalgebra associated with Aut,(X), such that Lie(Aut,(X)) = aut,(X)
for Aut,(C) := {f|f(2) = ‘clzzjr'g, ad — be # 0} = PGL(2,C) = PSL(2,C). Assuming the action of II on X is
transitive, then there exists a I € aut(X) such that Ilgx)§ = x. Then, it follows that

a;(X) :/ e_m<§’x>7]*w :/ e—i7r<§,1'lg)n*w:/ e—i7r<§7log(eng)>n*w
0%; 0X; 8X;

. (o B
—27r<§,§log<7ro< 5 >>>
:/ ] —27r(§§logl'[>nw_/ o 5 . gl T
I, € Aut(X) Fj,< U >€GL(2,(C)

_ / o inleliog o) e, _ / (0 )P o,
I'; heGL(2,C) I'; ,heGL(2,C)

invoking the identification of X with CP'. Let M = X be a topological space, namely the universal covering space of
X, and let I' € Aut(M), a subgroup of the group of automorphisms on M. Thus, let I' := {g(2) = 2|2 € Aut(M)}.
We define the equivalence relation z ~ Z for z € M if and only if 2 — Z € I'. We denote by [z] the equivalence
class represented by z. Then from the natural projection 7 : M — M/T' = M/ ~, z+ [z], we obtain the quotient
space M/ ~ or M/T, and we define a quotient topology on M /I". Namely the subset UcM /T is open if and only
if 7=1(U) is open in X. Let v = {[U] = U/ ~ |U is open in M such that g(U) N U = 0 for g # Id,g € T} [T,

1-5]. Then v forms a basis for the topology of M/T". Observe that = : M — M/T" is a covering quotient map such
that for any p € M/I", p has a neighborhood [U,] C v and

(36) Y ([U,)) = U g(Up) and ¢(U ﬂg ) # 0 if and only if g = ¢'.
gel

In particular 7|gq,) : g(Up) — [Up] is a homeomorphism. By interpreting (7r|g(Up))_1 as a coordinate map,

M/T = X /T = X is a complex manifold where such a topology is equivalent to the previously constructed
topology of CP'. Note that, in the above, for aut(X) a vector space (a Lie algebra endowed with a Lie bracket
commutator [X,Y] = XY — Y X) and X a topological space, the left group action ¢ of aut(X) on X is a function
¢:aut(X) x X - X : (Il z) — ¢(I1, x) that satisfies the identity, compatibility axioms (where we denote ¢(I1, x)
as IT-x for II € aut(X)). The action of IT on X is transitive because X is non-empty, and for &, x € X there exists
a IT in aut(X) such that y = I - £ for X an aut(X)-space equipped with an action of IT on X. Therefore, aut(X)
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automatically acts by automorphisms IT on the set (topological space). If X in addition belongs to some category,
then the elements of aut(X) are structure preserving. Thus, X is a homogeneous aut(X)-space on which aut(X)
acts transitively. If X is an object of the category C, then the structure of a aut(X)-space is a homomorphism
p:aute(X) — Auto(X) into the group automorphisms of the object X = X/I' = X /1 (X) = X JAutc(X) = X
in the category C. The pair (X, p) defines the homogenous space provided p(autc (X)) is a transitive group of
symmetries of the underlying set X with p : auto(X) — Autc(X) evidently the exponential map. For the
Riemann surface X = X = CP!, the Burnside’s lemma gives the cardinality

- 1 -
(37) /)= 0 [
T} 2=
where X9 is the set of points fixed by T.

12. COHOMOLOGY THEORY

Consider the de Rham complex, i.e. the cochain complex of differential forms on the Riemann surface X with
the exterior derivative dP as the coboundary operator d? : QP(X) — QPTL(X),
(38) 0-00x) Lot DL P orx) &y
for QP(X) := QPO(X). Closed forms on X are classified by requiring that two closed forms a,3 € QP(X) are
cohomologous if they differ by an exact form, i.e. a — § is an exact form. Such a classification gives rise to an
equivalence class on the space of closed forms in QP(X), for the p-th de Rham cohomology HY,(X) the set of
equivalence classes. For later application, we begin by extending de Rham’s theorem to the case in which the
coefficient field of cohomology is C and the manifold under consideration is the Riemann surface X analyzed
above. Consider the map I : H),(X) — HP(X;C) defined in the following manner: For any [w] € H),(X), by
assumption, let I(w) be the element of Hom(H,(X;C),C) = HP(X;C) that acts as

(39) H,(X;C) > [c] — /w € Hom(H,(X;C),C) = HP(X;C)

for I(w) : [w] = [wor I(w) : H)R(X) — HP(X;C), where ¢ is a p-cycle representing the homology class
[c] € Hy(X;C). The theorem of de Rham asserts that such a map is in fact an isomorphism between de Rham
cohomology and singular cohomology. To construct singular cohomology, consider the set of all possible n-simplices
o, (A™) on a topological space for the continuous mapping o, : A™ — X. This may be used as the basis of a free
abelian group such that each o, (A™) is a generator of the group. Note that the set of generators is usually infinite
as there are many ways of mapping any one simplex into the topological space. The n-simplex A" is the convex
hull of n + 1 vertices. More precisely for n 4+ 1 points ug, ..., u, € R™ affinely independent we can define the
n-simplex by

Z@i = 1 where 6; > O,Vi} .
i=0

The free abelian group generated by this basis is denoted C™(X) for ), n;o;, with n; € Z, an element of C"(X). The
coboundary operator 9" : C"(X) — C"*!(X) is defined to act on singular cochains. The coboundary operator
together with the free abelian groups C™ form a cochain complex C*, namely the singular cochain complex.
Hence, we define the n-th cohomology group as the quotient H"(X) = ker(0")/im(0"!) := Z"(X)/B"(X) for
the coboundary operator satisfying 9" o 9"~ = On—1,n+1. Let C* and ©* be the singular cochain and de Rham
cochain complexes, respectively. Let f be a map between the two cochain complexes Q* := (Q°(X),d®) and
C* = (C*(X),0°%) whereby f, : Q"(X) — C™(X) is a sequence of homomorphisms, for each n, that commutes
with the coboundary operators on the two cochain complexes 0" o f,, = f, 11 o d”. Such a map sends cocycles to

cocycles and coboundaries to coboundaries, and thus descends to a map on cohomology (fe)* : H*(Q*(X),d*) —
H*(C*(X),0°%). Therefore with f, : Q"(X) — C™(X), the following diagram commutes:

0 —— Q0(x) — ol(x) 4 L o) 2 arx) — 2

(41) |7 | = |

0—— 0o(x) 25 ot(x) 2 o

Q
N
=
=
Q
2
s’
s
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In the notation of Hodge theory, the coboundary operator d coincides with the Dolbeaut operator 0 (different from
the coboundary operator associated with the singular cohain complex) given by 0 = aPtla) o g . QP — QP+1a)
with k := p+ ¢, E* the the total degree space of complex differential forms, and the canonical projection of vector
bundles 79 : EF — QP9 for ¢ = 0, such that this commutative diagram becomes

0 —— QOO(x) L uo(x) L, 27 gb-10(x) 2 o0 (x) ¥,

42

(42) lfo 0 lfl 1 , J/fp—l lfp
0—— 0OX) —L— o\(x) -2 .. 22, o (X)) 2 orx) 2 L.

The homomorphisms f, : Q0 (X) — C™(X) descend onto cohomology and induce a sequence of homomorphisms
(fn)* + Hip(X) — H"(X;C) such that (d")* and (0")* are induced coboundary operators associated with the
respective cochain complexes (H3p, (d®)*) and (H*(X;C), (9°)*). Therefore, recalling that X is a smooth complex
manifold and H%(X;C) = C with HJ,(X) = C for X simply connected, we obtain the following commutative
diagram:

(d)* (d)* (dP—2)* - (dPh)* (d)*
0 —— HIH(X) Hlp(X) HN(X) - HY(X) —— ...
(43) | | [ l(fp
0 ) (80)* 1 ) (81)* (ap—Q)* 1 ) (8;)—1)* 8 )*
0 — H°(X;C) —— H'(X;C) H(X;C) —= H
The induced sequence of homomorphisms (fy,)* : Hjp(X) — H"(X; (C) is precisely 1 f 2w e H"(X,C) for
" an n-cycle representing the homology class [¢"] € H,(X;C). If I(w™) = [, w" # O then H"(X;C) is necessarily

nontrivial if and only if the n-th de Rham cohomology group H dR(X ) is nontrivial. In particular,

Theorem 12.1. For suppose [0"] € Hjp(X) then [, 0™ # 0 implies that H"(X;C) # 0 if and only if the n-th de
Rham cohomology group H}p(X) is nontrivial for ¢ an n-cycle representing the homology class [c"] € H,(X;C).

For the case of n = 1, let 0! := e ™ &Xp'w € QUO(X) for [9'] € Hl,(X), then J.1 0" # 0 means that
the first singular cohomology group H'(X;C) is nontrivial if and only if H},(X) is nontrivial. The condition
[20F = [, e ™EX0n*w #£ 0 follows from X = X/T' = X/m(X) = X = CP' for the Riemann surface X
belonging to the category C. This result leads naturally to the following theorem:

Theorem 12.2. If X is a compact Riemann surface belonging to the category C, and if X = CP' for I' =
Autc(X) = m(X) trivial where X is simply connected, then the first singular cohomology group is nontrivial if
and only if the first de Rham cohomology group is nontrivial. However, since X is simply connected, the first
singular cohomology group H'(X;C) vanishes, which implies that for (f1)* fcl o'

ker (f1)") = {lw] € HdR(X) s ()W) = emxc) = 0) = HdR(X)7

by the first isomorphism theorem since H'(X;C) is the trivial group, i.e. ker (f 0 ) H}p(X) where ¢! denotes
a 1-cycle in [cY].

Hurewicz’s theorem states that the abelianization of the fundamental group (i.e. the first homotopy group) is
isomorphic to the first homology group Hy(X) = m1(X)/[m1(X), 71 (X)]. That is, the canonical abelianization map
hy 2 m(X) = m1(X)/[m1(X), 71 (X)] is an isomorphism. In this particular case, for X a compact Riemann surface,
the first cohomology group vanishes because X is path connected and 7 (X) is a perfect group. Assuming that
the homology groups with C-coefficients are finitely generated, then this means that H"(X;C) = H,(X;C) for the
dimension of the dual space of a finite-dimensional vector space is the same as the dimension of the vector space,
inducing an isomorphism. Consequently, by Hurewicz’s theorem, Hy(X;C) = HY(X;C) = m(X)/[m1 (X), m1 (X)].
However, H'(X;C) vanishes and therefore, for 71 (X) = Autc(X) = Aut(C), [m(X), m1(X)] = [Aut(C), Aut(C)]

is the normal commutator subgroup. Recall that Aut(C) := {f|f(z) = ZZZIS, ad — be # 0} and if p : Aut(C) —

GL(2,C) is a representation, then for h = ( : g > € GL(2,C), p~to < 3 ? ) € Aut(C). Let det(h) # 0 for
h € GL(2,C) be an equivalence class on GL(2,C), then

(44) Aut(C) := {p_l o < : g ) / N‘ < : g > € GL(2,(C)} — {meromorphic bijections f : C — C}.
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Since a Mobius transformation determines b only up to scalar multiples A € C*, then Aut(C) = GL(2,C)/(C*I).
Thus an element of [Aut(C), Aut(C)] assumes the form

-1 ar fr 1 Aar ABy 1 an B -1 Aay,  ABp
['” O('n 51>”’ O<)\’Yl I R LR NEA S R (PO VS
T a; B —1 Ao AB;

(% 2 (2 2
~1 a; B -1 Ao AB;
[” (7 52-)”’ °<A% A6,
-1 -1
[ B Ao AB; —1 o Bi )\ -1 Ao AB;
_<% &-) O”(A% A&-) cper <7 6 )7 T\ e A
-1 -1
_ ([ a B op Ao AB; a; B o Ao AB; 7
Y o 0 Vi A Vi 6 AV A
which implies that an element of the normal commutator subgroup is given by

n -1 -1
11 o B op A AB; o Bi oo A AB;
e NYi Adi Yi 0 Ny Ad

o o B - o B
:.1:[1<’Yz’ 5i>plo<%' 5z'>

for the representation p : Aut(C) — GL(2,C) and for
+._ [ o 5: —_ [ Ao AB;

and

Vi z
with A € C*. It follows that an element of the commutator subgroup has the form
- -1 _ _
(45) T 65 epvy)  bipto H b o' o b € [m(X), m(X)].
i=1

13. DEGREE THEORY

For any meromorphic function f, there exists a divisor D, a finite linear combination of points on the Riemann
surface X with integer coefficients, defined as [6, Pg. 116-117]

Z E
zvER(f)
where R(f) denotes the set of all zeros and poles of f, and s, is defined as

« if 2, is a zero of order «,
Sy = . .
—a  if z, is a pole of order «

for 2, € X. The divisor (f) :=>_, o R(f) SvZv 18 equivalent to the integral 27” f. ou, # f(z)) dz, modulo pullback for
¢ : X — C; that is,

= % =g [ o (F0a) = [ conlEDueon

Recall, it was shown that the simply connected Riemann surface X is compact. Therefore, invoking the Riemann-
Roch theorem for a compact Riemann surface of genus ¢g with canonical divisor K, which states ¢(D) —¢(K — D) =
deg(D) — g+ 1, it follows that deg(f) = 0 for any principal divisor (f) := D on X since a meromorphic function
has as many zeros as poles (see Theorem [[0.2)). As such,

UD) — 6(K — D) = deg(D) +1 = 2—71” a (J;((j)) dz> +1=1
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. UD)— (K —D)—1=0

for [, ax @ (f /((ZZ)) dz) well defined since X is compact and orientable, and g = 0 follows from the first singular

cohomology group being trivial, i.e. H;(X;C)=0. If X = CP" and supy_,, .,)lg| < +oo, then [, ¢* (’}/((5)) dz)

vanishes, and we have the following theorem.

Theorem 13.1. If X = CP! and SUDPg— (2, ,2,) lg| < +o0, then X is a compact Riemann surface of genus g = 0
with canonical divisor K, such that (D) —¢(K —D)—1 = 0. In fact, more generally, deg(D) = 0 for any principal
divisor (f) = D on a compact Riemann surface since a non-constant meromorphic function f : X — CP! has as
many zeros as poles.

The homotopy category consists of topological spaces, equipped with morphisms of homotopy equivalence classes
of continuous maps. The topological spaces X and CP! are isomorphic in this category if and only if they are
homotopy equivalent. In fact, more generally, if X and Y are two topological spaces that are homotopy equivalent
(of the same homotopy type), then their homology groups are equal H,(X) = H,(Y) for all n > 0 [9, Pg. 13-18].
Thus, the isomorphism X 2 CP! induces a homotopy equivalence, which means that H, (X; M) = H,(CP'; M)
with a group coefficient M. This leads to the following theorem:

Theorem 13.2. A homotopy equivalence between the two topological spaces X and CP' is induced by the isomor-
phism X = CP', such that they share homology groups H,(X; M) = H,(CP'; M) for all n > 0.

The fact that if X and Y are two topological spaces that are homotopy equivalent (of the same homotopy type)
then the homology groups are equal H,(X) = H,(Y), for all n > 0, was invoked to prove the above theorem.

Theorem 13.3. If X andY are two topological spaces that are homotopy equivalent (of the same homotopy type),
then the homology groups are equal H,(X) = H,(Y) for all n > 0.

Proof. A continuous mapping f : X — Y induces a homomorphism f; : Cp,(X) — C,(Y). It follows that f; is a
chain map, such that 0f; = f;0, descending to homomorphisms on homology f. : H,(X) — H,(Y).If f and g are
homotopically equivalent then f, = g, from which it follows that if f is a homotopy equivalence (i.e. X and Y are
homotopy equivalent) then f, must necessarily be an isomorphism. As such, let F': X x[0,1] — Y be a homotopy
map that takes f to g. We define a homomorphism on the level of chains, P : C,(X) — Cp41(Y), that takes a
basis element o : A" — X, a generator of Cy,(X), to the prism P(c) : A" x I — Y. The boundary, obtained by the
alternating formal sum, is OP(c0) = fy(0) — gs(0) + P(00). Therefore, if o € C,,(X) is an n-cycle then fy(«) and
gs(a) only differ by the boundary fi(a) — g4(c) = OP(«x), which means that the homomorphisms are homologous.
The proof of the theorem is now complete. Theorem follows at once. O

14. HOMOLOGY FOR THE GENERALIZED RESULT AND CONCLUDING REMARKS

We now consider the local exactness of the above condition for compact support. The characterization of
connectivity of a region leads to the important idea of homology, in a complex-analytic sense. In particular, we
give a contextualized definition [I, Pg. 141].

Definition 14.1. A cycle v = 90X in a open set Q is said to be homologous to zero with respect to Q if n(y,a) =0
for all points a in the complement of Q). To denote this relation, we write v ~ 0(modSY). The notation vy, ~ 7y is
equivalent to v1 — 2 ~ 0.

The homology « ~ 0(modS?) implies v ~ 0(modQ’) for @ C Q. In this particular case, if [ e I ApdS = 0 for
the Riemann surface X of genus g = 0, and if X = CP* for X given parametrically in terms of local coordinates (z;)
by the chart ¢ : X — C, ¢(z1, 22) = (21, 22)tan (§ + %) (cosz + isinzy) for (21, 22) > 0 and the diffeomorphism
n: X — CP with (21, 22) = —g(n(21, 22))e™ X8 for w € MQLN(CPY), n*w € MQLY(X) meromorphic (1,0)-
forms, then 0X; is homologous to zero with respect to Xj, i.e. 0X; ~ 0(modX;), and 0X; ~ 0(modX \ X;) for
X\ X; D Xj. Hence, by Cauchy’s theorem, if f(z) is analytic in X, then fan f(2)dz = 0 for every cycle 0X;
ylgl < +oo. Thus, it
follows that n*w is necessarily an exact differential form. Note that the homology groups, with coefficients in C,
of the topological space CP! are given by

which is homologous to zero in X;, whereby |, ox, f(z)dz = fan n'w = 0 with sup,_

21,22

C for k=0,2,
0 otherwise,

H,(CP!,C) := {
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which follows from the existence of the diffeomorphism S? = CP! via stereographic projection. This simple
observation became important in proving ker ([, 0) = H},(X) for X = CP' where ¢! denotes a 1-cycle in [c!].
The condition of compact support yields the following theorem [see Appendix [Al for a complete complex-analytic
proof].

Theorem 14.2. The integral fan n*w = fan M (21, 22)d\+ N(z1, 22)d¢ is locally exact in X, which implies that
fan n*w = 0 for every cycle 0X; ~ 0 in 0X;.

Remark 14.3. We conclude by presenting a particularly revealing example for which the above theory applies,
namely the case in which g € Q%(logD) C MQO(C) is the logarithmic derivative of the Riemann Xi-function, i.e.
g =¢&(2)/&(2), defined in the sense of Landau as £(z) = %z(z—l)w‘sz(%)((z). Note that here D C C is a divisor
of C consisting of the set of points for which g is singular; namely, the set of zeros of £ is a subset of this divisor.
Since & is entire, satisfying the symmetry £(z) = £(1 — z), then it can be alternatively defined by the Weierstrass
product

(46) 2)=¢0) ] (1—§>

p,[Im(p)|

where the product extends over the non-trivial zeros of the Riemann zeta function ((z), p, in order of increasing
|Im p|. Here N; = ﬁ fan w = o fan %dz counts the number of zeros of £ by the argument principle, and

2mi
thereby the number of zeros of ¢ in the compact region U; C C where £ is entire, i.e. it has no poles. Note that

the logarithmic derivative of the Riemann Xi-function can be expressed as

§(2) 1
7) £u>‘§;z—n

Thus, by imposing the condition that fX e~ ApdS = 0 for the Riemann surface X of genus g = 0, and if

X =~ CP! for X given parametrically in terms of local coordinates (z;) by the diffeomorphism n : X — CP! with

n(z1,22) = —%eiﬂ(x’a, then we can locate precisely the values of z € C for which N; = ﬁ fan g((zz)) dz = 0.

Remark 14.4. Furthermore, the theory developed in the above analysis was applied to complex meromorphic
differential (1,0)-forms w € MQEO0) - However, a similar theory can be developed for meromorphic (p, q)-forms in
the space QP9 = /\p Q1.0) /\q QO stable under a holomorphic change of coordinates. Thus, in local coordinates

the (p,q)-form may be expressed as w = Z\I\:p,lJ\:q frrdzt Adz? e QWD for I,J multi-indices, where QP9 s
equipped with the Dolbeaut operators 9 : QP9 — QP+LO) gnd § . QP9 — Qatl),

APPENDIX A. GAUSSIAN CURVATURE

The Riemann surface X can be parameterized in terms of the local coordinates z;, i = 1,2 as

¢(z1)cos(a(z1) + B(z2) + Cm)
F(z1,2) = | ¢(z1)sin(a(z1) + B(z2) + Cm)
z1 + 129

The coefficients of the first fundamental form may be given as E = g11 = (F,,, Fy,), F = g12 = (F,,, F,), and
G = go2 = (F,, F,,) where

%cos(a(zl) + B(22
F, = d—(;sin(oz(zl) + B(22

dzy

+ o+
QQ
a3
+
==
W W
= =
3z
-
25
N W
[
+ o+
= =
W W
SO
+ o+
QQ
33
Qo &
oaR

—¢(z1)sin(a(z1) + B(z) + Cm) 2
F., = | ¢(z1)cos(a(z1) + B(z) + Cm) 42 | such that
i
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E=gy=(F.,,F.,)=1+ <5—jlcos(a(zl) + B(z2) + Cm) — ¢(z1)sin(a(z1) + B(22)

+m>3§1> + <5—ﬁsin< (1) + B(z2) + Cm) + p(21)cos(a(z1) + Blz2) + C”)jz>

B dop\* . da \*
=1+ <d—21> + ¢*(21) <d—21> )
) dg (de¢ .
F = g9 =(F,, F.,) =i+ ¢(z1)cos(a(z1) + B(z2) + C’7T)d—z2 <—Szn(a(z1) + B(z2)

le
i s (s
dz dzo le

cos(a(z1) + B(z2) + Cm) — ¢(z1)sin(a(z1) + B(22) + Cﬂ)j—> =i+ ¢z )c(lif doi
g \?

G = g2 = <F227Fz2> =—-1+ ¢2(21)sin2(a(21) + 5(22) + Cﬂ') <—>

dZQ
2 2
+ ¢%(21)cos*(a(z1) + B(z2) + C) (j—i) = ¢*(21) <5—i> —1.

+Cm) + ¢(z1)cos(a(21) + B(22) + C) > — ¢(z1)sin(a(z1) + B(z2) + Cm)——

and

Therefore, after simplifying terms F, G, F, the Riemannian metric can be given locally as

2
g=ds*= <1 + <5—¢1605( (21) + B(z2) + Cm) — d(z1)sin(a(z1) + Blz2) + CW)j_:)

2
+ (j—(ism( (21) + B(22) + Cm) + ¢(z1)cos(a(z1) + B(22) + Cw)%) >dZ%

d—zsm( (z1) + B(22) + Cm) + ¢(21)cos(a(z1)
o

# Blea) + Om) 3 ) = ol)sin(aten) + 3len) + Om) 3 Focos(alen) + 5(ea) + Cm
g \?

— ¢(z1)sin(a(z1) + B(z2) + Cﬂ)j—jl>>d21d2’2 + <¢2(zl)sm2(a(zl) + B(22) + C) <d—22>

2
+ ¢%(21)cos?(a(z1) + B(z2) + C) <5—i> — 1) dz3

d do\? g d
(1 + (di) + ¢*(21) <d—zal> > dz} +2 <z +¢2(Z1)d_id_jl> dz1dzy

<¢2(z1) <ji> 1) dz3.

Thus, the EG — F? term becomes

_ dB\*  (do\* (dB\® [ da do ;48 do
w  oerese|(2) s (2) (2) - ()] (L) -

Likewise, the Gaussian curvature is given by K = EG ;2 where E = g1 = (F,,, F.,), F = g12 = (F,,, F.,),
and G = gaa = (F%,, F,,) are coefficients of the first fundamental form and e = (N, F, ), f = (N, F,,,), and
g = (N, F,,.,) are the coefficients of the second fundamental form, where N is the normal vector N = F,, x F,.

+2 <Z +o(z1)cos(a(z1) + B(2) + C) ji <



28 SERGIO CHARLES

Calculation in the standard Euclidean basis gives the second order partial derivatives,

2
F, . = <Mcos(a(21) + B(z9) + Cm) — 2d—¢d—a3in(a(21) + B(2z2) + Cm) — ¢(21)cos(a(z1)

dz3 dz dz
2
+8)+ Cm) (52) — a)sinlata) + Blar) + Cn) L5 Tsin(a(en) + 8(e2) + )
+ Q@d—acos(a(z )+ B(z2) + Cm) — ¢(z1)sin(a(z1) + B(22) + Cnr) do 2
le le ! 2 T ! ! 2 m le

d?a
+ @(z1)cos(a(z1) + B(z2) + C?T)W, 0),
1

—¢(z1)cos(a(z1) + B(z2) + C) (%)2 — ¢(z1)sin(a(z1) + B(z2) + (777)2%3

Fom = | ¢(21)cos(alz1) + Blza) + (777)?&27%3 = ¢(z1)sin(alz1) + B(z2) + C) <5_Z>2 7
0

and

oy cos(a(z1) + B(z2) + Cm) — ¢(21)§%£3m(a(21) + B(22) + C)

(ﬁjismwl) + B(22) + Om) — $(21) 22 92 cos(afz1) + Blza) + cm)
F d¢ dp
2122 dz1 dza

0

Furthermore, the normal vector IN to the Riemann surface X is given by N = g—z X g—i

= <ij—¢sz’n(a(z1) + B(z2) + Cm) + i¢p(2z1)cos(a(z1) + B(z2) + Cw)j—a
21 Z1

+ B(z) + Cw)j—i, i6(z1)sin(a(z1) + B(z) + ow)j—z _ ij—jlcos(a(zl) + B(2) + Cr)

~ dan)sin(a(an) + Blzz) + Cm) L ‘Wl)j—i%)

— ¢(z1)cos(a(z1)

Lastly, we calculate the coefficients of the second fundamental form, which can in fact be expressed as e =
(N,F, ), f=(N,F, ), and g = (N, F,,,,) for

2
e = <N, 687?> = <ij—isin(a(21) + B(2z2) + Cm) + igd(z1)cos(a(z1) + B(z2) + Cﬂ)j_jl

dé do

2
— ¢(z1)cos(a(z1) + B(z2) + C’W)j—i) (j—;gcos(a(zl) + B(z2) + Cm) — 2d—,21 d—lein(a(zl)

da \? . Ao
+ B(z2) + Cm) — ¢(z1)cos(a(z1) + B(z2) + C) <d—zl> — ¢(21)sin(a(z1) + B(22) + Cﬂ)d—z%>
do

+ <i¢(zl)sz’n(a(zl) + B(z2) + C7T)d—z1 — ij—icos(a(zl) + B(z2) + Cm) — ¢(21)sin(a(z1)

2
+ B(22) + Cw)j—i) (Z—Z?Sin(a(zl) + B(z2) + Cm) + 2;—2 j—jlcos(oz(zl) + B(z2) + Cm)

a2 2o
— ¢(z1)sin(a(z1) + B(z2) + C) <j—z1> + ¢(z1)cos(a(z1) + B(z2) + Cw)d—>

dz?
=oe (1) () o () () - (1) “‘Ml(i—?l) ()
~ioa) (42 (f—f) ~iota) (1) (j—‘j) sin(2a(1) +28(z1) + 200)

g0 (da
Z<d21> <d2’1>7
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2
g= <N, %71;> = <i¢(z1)8m( (z1) + B(22) + Cﬂ')j—jl - zj—jlcos( (z1) + B(z2) + C)
2
23

— ¢(z1)sin(a(z1) + B(z2) + Cﬂ)j—i) <¢(21)cos(a(21) + B(z2) + Cm)—= — ¢(z1)sin(a(z1)

dz%
dg do

2
+ B(z2) + C) <d—22> > — <i¢(zl)sin(a(zl) + B(z2) + Cﬂ)d—Zl — zj—(blcos( (z1) + B(z2)

+ C7) — ¢(z1)sin(a(z1) + B(z2) + C’?T)j—i) <¢(z1)cos( (z1) + B(z2) + Cﬂ)d B_ (1)

dz 2
st () - () () - () (2)

3
+ () (j—i) |

and
§ o
f= <N, 7821(522> = <i¢(21)sm( (z1) + B(z2) + C?T);l—l — zj—icos( (z1) + B(2z2) + Cm)
. dg do dp do df
— ¢(z1)sin(a(z1) + B(z2) + Cm )dz > (d—ad—@ cos(a(z1) + B(z2) + Cm) — ¢<Z1)d—ad—,z2

sin(a(z1) + B(z2) + Cﬂ')) - <z’j—zsz’n(a(zl) + B(2z2) + Cm) +ig(21)cos(a(z1) + B(z2) + Cm)

37& — ¢(z1)cos(a(z1) + B(z2) + Cm )di> (@@cos( (1) + B(z2) + C7) — d(21)———

sm(a(zl)JrB(zz)JrCW)) = <5jl> <ji> _i¢2(2)<dzl> <ccllzi>

+ e () (ji) .

Thus, the Gaussian curvature K = %_f; is given by the following explicit formula

<< (42 (42 o0 (22) (£2) -0 (22)
it (1) (458) -t (42) (55) -t (42) (22 ) st + 20
+2wc>—zz<5:1> () (ot (22) (5) -0 (22) (2)

) (2))- () () - ><dzl> ()

= (2) () ) (e | () (2 () ()]
[y iy

+ (252 Z1
As in the above analysis, to make the calculation of Gaussian curvature less tedious, we invoke the isothermal
coordinate argument. If either the sufficient condition ¢> = —g? for g € MQ(()’O)((CIP’l) or the coupled differential

2 2
equation (j—z) + ¢2(21) [(g_;) _

isothermal coordinates on X, such that

_ 1 _ L [[Aryg_ L [[Aldl g
(50) X(X)—27T//Kd5_ 47T//epd5_ 4W// 9L s = 2
X X X

(49)
+ ¢?

dzo dzo dz1

2
<ﬁ> + Ziﬁd—o‘} = 0 is satisfied then (z;,22) must necessarily be local
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2
means that the Riemann surface has genus zero. Since p = logl', for I' = 1 + ( dj; ) + ¢%(21) (j%) , is solely
dependent on the first local coordinate z; then

dj; P(21) djl o + ¢%(21)
ApzAlogrzaa—;mgr:gaizl <d >( >+1+1(d(d) )+(<:2 31 ( )21 ( )( )

- [(Zi‘f)+<55i><f§>;<5z’i>2(§;‘i>2+¢<zﬂ<“> i) e ()
() (&) oo () oo () (&)l ((@) ()

o (32) (i) e () (5))((2) (55) o () (2)
coen () (3))]

To conclude, we impose the condition that (21, 22) = 21 + 12y are isothermal coordinates provided E — G +2iF = 0.
This is equivalent to the coupled set of differential equations, Eq. [I1],

do \* da\* (dB\* . dBda| _
o (&) | () - (2) =]

le
In a similar vein, we impose the condition of biholomorphicity for which the map 1 : X — CP! is biholomorphic

ﬂ_.
if and only if ¢(z1) = A’ %2 (=) for A € C. To obtain a differential equation purely in terms of a and g,

da —ia(z1)

B
we compute the first order ordinary derivative 2 E =A (% —4 dzl) 1z such that under substitution the

condition for isothermal coordinates is automatically satisfied, inducing a tautology.

APPENDIX A. HOMOLOGY

The condition of compact support in the above analysis gave a statement on the exactness of the pullback n*w

[Theorem [14.2].

Theorem A.1. The integral fan n*w = fan M (21, z2)dz1 + N(z1, 22)dzo is locally exact in X;, which implies
that fax- n*w = 0 for every cycle 0X; ~ 0 in 0X;.
J

Proof, Ahlfors. We invoke an elementary complex-analytic proof of Ahlfors [I, pages 144-146]. To simplify nota-
tion, let v denote 0X; and € denote X;. Then we construct o, a polygonal approximation of v with horizontal
and vertical sides such that every locally exact differential form has the same integral over ¢ and ~. Using the
property n(o,a) = n(vy,a) for a € O, i.e. 0 ~ 0, it will be sufficient to prove the theorem for rectifiable polygonal
curves, with sides parallel to the axes.

Hence, for ¢ an polygonal approximation, as described previously, of v, let the Euclidean distance from ~ to
Y be p. If v is given parametrically as z = z(t), then the function z(¢) is uniformly continuous on the closed
interval [a,b]. Furthermore, let 6 > 0 such that |z(¢t) — z(¥')| < p for |t — /| < & by subdividing the interval [a, b]
into subintervals of length strictly less than p. Then, the subarcs «y; of 7 have the property that each is contained
in a disk of radius p which is contained entirely in 2. The end points of v; can be joined by a polygon o; within
that disk, consisting of a horizontal and vertical line segment. The exactness of the differential form, that is the
path-independence, in the disk implies that

/ Mdz + Ndzy = Mdzl—l—Ndng/ Mdz1 + Ndzo,
oy 0X;,i=(0X;)

i
and for o := )", 0;, we have
/Md21+Nd22:/Md21+Nd22: Mdz1 + Ndzo.
o ¥ 0X;

Proceeding, we invoke the following construction: extend all segments that make up o to infinite lines. They must
divide the plane into some finite rectangles R; and some unbounded regions R;, thought of as infinite rectangles.
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Choosing a point a; from the interior of each R;, we form the cycle
o9 = Zn(a, a;)OR;
i
where the sum extends over all finite rectangles. The coefficients n(o, a;) are well determined for no a; lies on o.
Similarly, let a;- denote the points chosen from the interior or each R;-. For k = 14, the index is n(0R;,ar) = 1,
whereas n(0R;,ay) = 0 if k # 4, and likewise, n(0R;,a}) = 0 for all j. From o9 = >_;n(0,a;)0R;, it becomes
clear that n(oo,a;) = n(o,a;) and n(ao, a3) = 0, with R an unbounded region. From linearity, it follows that
n(oc — og,a) = 0 for a = a; and a = a . Let o be the side shared by adjacent rectangles R;, Ry, where the
orientation is such that R; lies to the left Of oik. Suppose that the expression of o — oy contains the multiple coy;
then, the cycle o — oy — cOR; does not contain o, meaning that a; and a; must have the same index with respect
to this cycle. The indices are —c and 0, respectively, which forces ¢ = 0. Similar reasoning applies to an infinite
rectangle R;-. The common side occurs with coefficient zero in o — o, which proves

o= Zn(a, a;)OR;
i
by invoking n(oc—og,a) = 0, meaning that o and o are equivalent up to cancellation of mutually shared boundaries.
Lastly, to complete the proof, it must be shown that if n(o, a;) # 0 for a; € R; then R; is contained in €. Suppose
that a point a in the closed rectangle R; were not in §2. Then n(o,a) = 0 for o ~ 0(modS?). The curve joining a and
a; does not intersect o, which implies that n(o,a;) = n(o,a) = 0. Therefore, by the local exactness of the integral,
faRj Mdz 4+ Ndzy over OR; is zero by o = Y, n(0, a;)OR;. Therefore, [ Mdz + Ndz = fan Mdz + Ndzy = 0,
as was to be shown. O
APPENDIX A. DOLBEAULT’S LEMMA

We prove the following lemma that guarantees the existence of a solution to the inhomogeneous Cauchy-Riemann
differential equation 9f/0z = g.

Lemma A.1. Suppose g € E(C) has compact support. Then there exists a function f € E(C) such that a—f =g.

Proof. Define the function f : C — C by
_ 1 9(2) .
C)—%Z_//CZ_Cdz/\dz.

Since the integrand has a singular point when z = (, one has to show that the integral exists and depends
differentiably on (. The simplest way is to change variables by translation and then introduce polar coordinates
r,6. Namely, let z = (+re'?. Performing the integration, one treats ¢ as a constant, where the polar transformation
yields dz A dzZ = —2idzx N dy = —2irdr A df. Consequently

1 160
- / / %rdrd&
= —l//g(C—Freie)e_wdrd&
T

By hypothesis g € £(C) has compact support, meaning that one has to only integrate over the rectangular region
0<r<R,0<0 <2m, given that R is sufficiently large. One may then differentiate under the integral sign for

f € £(C), such that
29
of :__//89 1) igrap,

Transforming back to the original coordlnates and letting B6 ={z€C:e<|z| <R},

of dg( C+ z _
(9C( 27i e—>0// ;dz Nz
Assuming that z # 0, then 89(@2)% = 8g(<fz)% =

5z 53 (@) and thus,

Be

Sl
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where the differential 1-form w is given by w(z) = ﬁ@dz for z a variable and ¢ a constant. Thus, by Stokes’
Theorem,
af . . .
—({) = —lim dw = — lim w = lim w.
8C e—0 e—0 OB, e—0 |z]=¢
Be

2
By parameterizing the circle |z| = € by z = ee??, 0 < 6 < 27, one obtains g—g(() = lim._,q % Ja(C+ ee’?)dh, which
0

is the average value of the continuous function g over the circle ¢ + ee? for 0 < § < 2x. By continuity, the above
integral converges to g({) as € — 0 such that
of

The proof of the lemma is now complete. O
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