
LAMANAS: Loss Agnostic and Model Agnostic Meta Neural
Architecture Search for Few-Shot Learning

Stanford CS229 Project: Theory and Reinforcement Learning

Sergio Charles
Department of Computer Science

Stanford University
sergioc1@stanford.edu

Gordon Chi
Department of Computer Science

Stanford University
gsychi@stanford.edu

Gil Kornberg
Department of Computer Science

Stanford University
gilk@stanford.edu

Abstract

We present LAMANAS1, a novel neural architecture search method that is loss and model agnostic. The algorithm
searches for and trains a network architecture that generalizes well and adapts quickly to unseen tasks. This is achieved
by finding high-performing, meta-learned model and architecture parameter initializations using a self-supervised loss.
The loss is parameterized as a neural network which allows the neural architecture search to learn an optimal loss
landscape for each task without imposing a strong prior. Using a simple long-short term memory (LSTM) recurrent
neural network for the loss architecture in tandem with a inner product loss proxy, between the gradients of the
self-supervised loss and gold-standard cross entropy, yields state of the art improvements over MetaNAS.

Mentor: Yao Liu & Rachel Gardner

1 Introduction

In recent years, the machine learning community has made several significant strides in the quest toward Artificial General Intelligence
(AGI), and away from "narrow" intelligence. In 2015, motivated by the human capacity to generalize concepts successfully after seeing
only one or a few examples, a phenomenon known as one-shot learning, [1] introduced the Omniglot and MiniImagenet datasets and their
corresponding benchmarks. Models must be equipped to learn robust and flexible representations if data from only a small set of examples
if they are to be successful in the few-shot setting, while maintaining speed and efficiency. In parallel, Model Agnostic Meta-Learning
(MAML) [2] introduced a model-agnostic gradient-based approach proposed by Finn et al. that optimizes parameters of a model for rapid
adaptation to new tasks. MAML finds good model initializations such that adaptation to a new task is efficient and can be achieved in a
few-shot setting. Neural architecture search (NAS) was proposed in 2017 [3] to automatically learn network architectures that maximize
performance on a specific task. It does so by using an RNN meta-controller to predict a sequence of tokens that specify architectural
hyper-parameters of the learned architecture.

In 2020, MetaNAS [4] combined gradient-based neural architecture search (NAS) methods with gradient-based meta-learning methods.
They used a flexible model architecture during meta learning, which enabled fast and cheap task adaptation, achieving state-of-the-art
performance on the standard few-shot learning benchmarks, Omniglot and MiniImageNet, at the time of publication. Finally, [5]
introduced Self-Adaptive Visual Navigation (SAVN) which aims to design robust and flexible learning algorithms for robotics domains.
This is accomplished using a self-supervised loss, meaning the agent learns on its own as it interacts with the environment. The authors
point out what all humans know: that learning is a continuous process ad infinitum. Inference need not come at the expense of training.
Whether learning to learn or learning to learn how to learn, model agnostic or loss agnostic, the aim of these approaches is to achieve
high-performance and good model generalizability, and to do so using minimal resources. Hence, we propose LAMANAS for loss and
model agnostic meta learning of neural architectures for few-shot learning.

2 Related Work

1The code implementation is on GitHub at: https://github.com/sergiogcharles/lamanas

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://github.com/sergiogcharles/lamanas


Figure 1: An overview of the LAMANAS algorithm.

NAS [3] proposed the serialization of neural network topologies
whereby the architecture could be encoded as a sequence of tokens,
i.e. operations at each layer. They were able to train an RNN meta
controller to produce the sequence of architectural hyperparam-
eters a1:T , which is a sequence of actions in the reinforcement
learning-theoretic sense [3]. NAS works by using the RNN con-
troller to sample a candidate child model, training it to convergence
and then evaluating the reward R, usually measured by the accu-
racy, of the child model on a held-out validation set, which induces
a controller update signal. However, the method uses a REIN-
FORCE [6] proximal policy-based reinforcement learning, which
is prohibitively expensive. In light of this, Liu et al. introduced
Differentiable Architecture Search (DARTS) [7] that characterizes
neural architecture search as finding architectures as sub-network
graphs of the directed acyclic super-network graph, which eschewed the need for an RNN controller. It also stacks the learned computation
normal and reduction cells to form a convolutional neural network, as introduced by NASNet [8].

MAML [2] is a meta-learning algorithm, proposed by Finn et al., that optimizes parameters for rapid adaptation to new tasks in the
few-shot setting. Each task Ti in the large training set Ttrain has a small meta training DTitrain dataset and meta validation dataset DTival. In the
case of n-way, k-shot image classification, Ti consists of the n image classes, DTitrain has k examples for each of the classes, the objective is
to correctly assign class labels to images in DTival [5], and we evaluate on the test task Ttest of unseen classes. The MAML training objective
is given by:

min
θ

∑
Ti∼p(Ttrain)

L(θ − λ∇θL(θ,DTitrain),DTival). (1)

where θ is optimized to provide good initializations, which allows for fast adaptation to unseen test tasks. We adapt the parameters for
the task on the training set DTitrain by performing the task learner update θ − α∇θL(θ,DTitrain) iteratively and then optimize θ on the task
validation set DTival.

Given model parameter initializations θ, let WTi denote the manifold of optimal parameters for the task Ti. Then Reptile [9] is a
gradient-based meta-learning method that finds the parameters θ∗ close to all of the manifolds of optimal parameters for all tasks. Namely,
for a metric on parameters space d(θ,WTi), it will optimize minθ ETi

[
1
2d(φ,WTi)2

]
by performing SGD such that the distance between

θ and the optimal manifoldWTi is small for all tasks. MetaNAS [4] is a method, proposed by Elsken et al., that combines gradient-based
neural architecture search (NAS) methods, such as DARTS [7], with gradient-based meta-learning methods, such as MAML [2]. It
optimizes meta-architecture parameters αmeta in tandem with meta-model parameters θmeta during meta-training. The meta-parameters
αmeta and θmeta are able to adapt quickly to a new task Ti with only a few labeled data points, i.e. for n-way, k-shot tasks. That is, it can
adapt the meta-architecture to a task dependent architecture [4]. While MetaNAS presents a model-agnostic neural architecture search, it
still introduces strong priors with hand-crafted task objectives LTitrain. Finally, SAVN [5] introduces a loss-agnostic approach to MAML by
learning a self-supervised task interaction objective, which proves useful in "learning how to learn" based on an agent’s trajectory.

3 Dataset & Features

All experiments were run on the Omniglot dataset, which consists of 1623 unique characters taken from 50 alphabets hand-drawn in pen
or pencil. We follow the same evaluation method used in [4], namely, the n-way, k-shot setting as proposed by [10]. A few-shot learning
task is constructed by first sampling n classes at random from Omniglot and then sampling k examples for each class. We used n = 20
and k = 5 for a 20-way, 5-shot model evaluation setting. Each example in Omniglot is (1, 28, 28), each batch is (20, 1, 28, 28), and we
use 1 test example per class. Lastly, we use a Vinyals split as in [10]. The architecture always begins with a constant stem which is simply
a 2-D convolution followed by a 2-D batch normalization layer. The rest of the architecture is determined by a search of the architecture
space over a set of candidate operations, e.g., 3 x 3 convolutions, 3 x 3 average pooling, and the zero operation. The learned architecture
always performs feature extraction, and we will explore different learned architectures in Section 5.

4 Method

Adopting the notation of MetaNAS and SAVN, (DTitrain,D
Ti
val) is the sampled task, LTival is the supervised loss for the task Ti, ΦK is a

K-step task learner algorithm like SGD, and (θ, α) are model and architecture parameters, respectively. For task Ti, θTi := θi are
the model parameters, αTi := αi are the architecture parameters, and (θ∗i , α

∗
i ) = ΦK(θ, α,DTitrain) are the optimized parameters. We

denote the meta-parameters by θ and α. Methods like DARTS hold α constant so we optimize the task model parameters θi by using
the task learner ΦK(θ, αconstant,DTitrain) which applies the following one-step SGD update K times: θi := Φ1(θi, αconstant,DTitrain) =

θi − λtask∇θLTitrain(θi, αconstant,DTitrain) [4].

2



Figure 2: Details of the LAMANAS algorithm.

In constrast to these methods, we construct a K-step task learner ΦK that, for task Ti, optimizes both the task model parameters θi and
the task architecture parameters αi with model learning rate λtask and architecture learning rate ξtask, commensurate to MetaNAS. That is,
we write the one-step update as [4]:

[
θi
αi

]
= Φ1(θi, αi,DTitrain) :=

[
θi − λtask∇θLTitrain(θi, αi,DTitrain)

αi − ξtask∇αLTitrain(θi, αi,DTitrain)

]
(2)

for LTitrain the task’s self-supervised training loss. We repeat this update K times until we converge to the optimized task parameters θ∗i and
α∗i : [

θ∗i
α∗i

]
= ΦK(θi, αi,DTitrain).

We use the following meta-objective to find a meta-architecture with parameters that are fast adapters when given new tasks:

min
θ,α
Lmeta(θ, α,ΦK) = min

θ,α

∑
Ti∼p(Ttrain)

LTival(ΦK(θ, α,DTitrain),DTival) = min
θ,α

∑
Ti∼p(Ttrain)

LTival(θ
∗
i , α
∗
i ,D

Ti
train) (3)

Furthermore, we update the meta-objective with a meta-learning algorithm like MAML:[
θ
α

]
= Ψ(θ, α,DTitrain) =

[
θ − λmeta

∑
Ti∼p(Ttrain)

∇θLTival(θ
∗
i , α
∗
i ,D

Ti
val)

α− ξmeta
∑
Ti∼p(Ttrain)

∇αLTival(θ
∗
i , α
∗
i ,D

Ti
val)

]
(4)

where θ∗i and α∗i denote the parameters optimized by the K-step task learner. For notational simplicity, we will eschew the explicit
reference to the K-step task learner ΦK and, instead, simply write one step of the SGD update inside our meta-learning objective:

min
θ,α

∑
Ti∼p(Ttrain)

LTival(θ − λtask∇θLTitrain(θ, α,DTitrain), α− ξtask∇αLTitrain(θ, α,DTitrain),DTival) (5)

where we, implicitly, mean that we perform the K-step task learner updates to θ and α, using the same dataset DTitrain. It is not prudent to
split the dataset in the small data regime of few-shot learning [5]. We let LTitrain be a feed-forward neural network parameterized by φ. The
training objective will be a modified version of Equation 5 (see Appendix for a proof of the approximation):

min
θ,α

∑
Ti∼p(Ttrain)

LTival(θ − λtask∇θLTitrain(θ, α,DTitrain;φ), α− ξtask∇αLTitrain(θ, α,DTitrain;φ),Dval) ≈

min
θ,α

∑
Ti∼p(Ttrain)

LTival(θ, α,D
Ti
val)− λtask〈∇θLTitrain(θ, α,DTitrain;φ),∇θLTival(θ, α,D

Ti
val)〉 − ξtask〈∇αLTitrain(θ, α,DTitrain;φ),∇αLTival(θ, α,D

Ti
val)〉

(6)

where φ is fixed during inference, according to SAVN [5]. Algorithm 1 shows a detailed implementation of the loss-agnostic MetaNAS
approach using MAML for the meta-optimizer, DARTS for neural architecture search, and SGD for the K-step task learner. Al-
gorithm 2 shows a varied implementation using Reptile [9] as the meta-learner, whereby in order to update the self-supervised

3



loss meta parameter φ, we must update it in our task-learner according to the loss of the neural network ∇φLTitrain(θi, αi,DTitrain;φi).

Algorithm 1 LAMANAS: Loss and Model Agnostic Meta
Neural Architecture Search with DARTS and Reptile

Require: Distribution p(Ttrain) over tasks
Randomly initialize θ, α, φ
while not converged do:

Sample batch of tasks Ti ∼ p(Ttrain)
for all Ti do:

θi ← θ
αi ← α
for j = 1, . . . ,K do:

θi ← θi − λtask∇θLTitrain(θi, αi,DTitrain;φ)

αi ← αi − ξtask∇αLTitrain(θi, αi,DTitrain;φ)
end for

end for
θ ← θ − λmeta

∑
Ti∼p(Ttrain)

∇θLTival(θ
∗
i , α
∗
i ,D

Ti
val)

α← α− ξmeta
∑
Ti∼p(Ttrain)

∇αLTival(θ
∗
i , α
∗
i ,D

Ti
val)

φ← φ− χmeta
∑
Ti∼p(Ttrain)

∇φLTival(θ
∗
i , α
∗
i ,D

Ti
val)

end while

Algorithm 2 LAMANAS Variant with DARTS and MAML

Require: Distribution p(Ttrain) over tasks
Randomly initialize θ, α, φ
while not converged do:

Sample batch of tasks Ti ∼ p(Ttrain)
for all Ti do:

θi ← θ
αi ← α
φi ← φ
for j = 1, . . . ,K do: . Task learner with K update steps.

finds θ∗i and α∗i
θi ← θi − λtask∇θLTitrain(θi, αi,DTitrain;φ)

αi ← αi − ξtask∇αLTitrain(θi, αi,DTitrain;φ)
end for
φi ← φi − χtask∇φLTitrain(θi, αi,DTitrain;φ)

end for
. Meta learner update via Reptile, sampling new tasks

θ ← θ + λmeta
∑
Ti∼p(Ttrain)

(θ∗i − θ)
α← α+ ξmeta

∑
Ti∼p(Ttrain)

(α∗i − α)

φ← φ+ χmeta
∑
Ti∼p(Ttrain)

(φ∗i − φ)

end while

5 Experiments & Results

As such, we conducted experiments using the meta neural architecture search method in Algorithm 2 by searching for a CNN that consists
of stacked computation cells, like in DARTS [7] and NASNet [8]. We employed two types of cells, namely a normal cell which preserves
the input dimension and a reduction cell which halves the output dimension by using a stride of 2. We designed many variants of the
learned self-supervised loss neural network LTitrain(θi, αi,DTitrain;φi) for each task Ti by varying its architecture as a feed-forward neural
network (FNN) or a long short-term memory (LSTM) RNN. We used DARTS as the task optimizer and Reptile [9] as the meta learner for
200 meta epochs with 5 tasks in each meta batch. Furthermore, we experimented with the use of a cross entropy residual connection in the
learned loss. In particular, during the task learner update, we computed the cross entropy between the CNN logits zTi and the ground truth
labels yTitrain and added it to the first layer output of the FNN/LSTM learned loss.

We leveraged a meta loss proxy to guide back propagation of the loss neural network and perform the third SGD task learner up-
date in Algorithm 2. For the first proxy, we measure how well the learned loss approximates the gold-standard cross entropy loss
LTival(θi, αi,D

Ti
train) = H(zi, y

Ti
train) for each task Ti. This was modeled by maximizing the similarity between the output of the cross entropy

loss and the learned loss using the following mean squared error difference:

LTiproxy = MSE(H(zTi , yTitrain),LTitrain(θi, αi,DTitrain;φi)). (7)

Another proxy method we used was to maximize the L2 inner product similarity between the gradients with respect to both meta
parameters θ and α of the self-supervised loss LTitrain and the cross-entropy loss, given by Equation 6:

LTiproxy = H(zTi , yTitrain)− λ〈∇θLTitrain(θ, α,DTitrain),∇θH(zTi , yTitrain)〉 − ξ〈∇αLTitrain(θ, α,DTitrain),∇αH(zTi , yTitrain)〉. (8)

In addition, we investigated the marginal benefits of using pre-trained layers in the meta architecture for the meta model CNN to learn
and extract stronger visual representations. For pre-training, we used the first four pre-trained layers of ResNet-18. Before using the
ResNet-18 feature extraction, for a batch size of N , we transform our input from (N, 1, 28, 28) to (N, 3, 224, 244) by upsampling and
applying a 1x1 convolutional filter. This is followed by another convolutional layer after the 4 layer encoding of the ResNet layers.
Unfortunately, our experimental results indicates that this harms performance, attaining low accuracy on the held out test set.

The layers of the FNN and LSTM loss neural networks use orthogonal initialization [11] for dynamical stability. The networks take
as input the concatenation of the logits produced by the meta model with the ground truth labels for each batch and embeds it using a
linear projection transformation, shown in Figure 2. In both cases, we also have the option of adding the output of the cross-entropy
loss on the batch of predictions as a residual connection, which is followed by an ELU non-linearity with a tunable hyperparameter

4



Accuracy (%)

Variant Residual Connection Loss Proxy Test Train Mean Number of Parameters

Baseline No N/A 82.5 57.1 413,215

FNN Yes MSE 41.6 50.0 398,533
No MSE 7.5 6.5 327,590
Yes Inner product 43.8 49.9 402,351
No Inner product 6.0 5.0 299,200

LSTM Yes MSE 89.8 61.0 398,533
No MSE 5.5 5.1 327,590
Yes Inner product 91.4 61.3 435,067
No Inner product 6.0 4.8 299,200

Table 1: Train and test accuracy across variants and hyperparameters, i.e. residual connections and loss proxy, compared alongside
the baseline model. The best variants is bolded, namely an LSTM loss neural network using a inner product loss proxy and residual
connection.

Figure 3: Snapshots of the geometry of self-supervised loss FNN function for the self-supervised loss network over hand-selected
meta-epochs 11, 20, 111 and 122. The loss neural network is an FNN with residual connections and MSE loss proxy. *At t = 1 epochs,
the loss is almost equivalent to cross entropy loss.

defaulted to α = 1 which, unlike ReLU, allows negative values to pass. As seen in Table 1, the residual connection significantly improves
performance. The FNN architecture includes another linear layer and finally we take the mean over the losses in the minibatch. The LSTM
architecture, illustrated in Figure 2, consists of 5 stacked many-to-one LSTM cells which takes as input the outputs of the embedding of
the logits in RN×H , reshaped to lie in R1×N×H . We initialize the hidden and cell states as the ground truth labels yTi . The FNN loss
neural network achieves an accuracy of 41.6% with a inner product loss proxy, slightly higher than the 43.6% with an MSE loss proxy. As
shown in Table 1, the RNN LSTM loss neural network architecture outperforms the benchmark MetaNAS with a train and test accuracy
of 61.0% and 91.4%, respectively. We hypothesize that this occurs because loss network is being adapted temporally, which lends itself
well to the LSTM mechanism. To plot the loss neural network as a function of two logits z1 and z2, as shown in the Figure 3, we used a
principal component analysis (PCA) by using a Singular Value Decomposition (SVD) on the model parameter matrix Θ ∈ Rm× where
Θ = UΣV > for the first layer of the neural network, U ∈ Rm×m and V ∈ Rn×n are orthogonal, and the diagonal Σ ∈ Rm×n is the
matrix of singular values of Θ. This yields the principal axes of the parameters of the loss neural network. The k-reduced parameter is
given by Θ̂ = ΘVk where Vk is the first k columns of the orthogonal matrix V . Namely, Figure 3 shows contours plot of the the loss
neural network as it adapts over meta epochs to learn the optimal loss landscape for various interesting snapshots. Interestingly, the
geometries of the losses being learned are, in certain cases, rotations of the baseline trough-like cross entropy geometry. As we progress
in meta training, the loss geometry converges to a trough and absolute height increases with increasingly larger gradients, which could
guarantee faster convergence. That is, if the architecture is in state (θ, α), then the amount of work done to increase the self-supervised
loss becomes arbitrarily large as we perform meta-training.

6 Conclusion

We have presented a loss and model agnostic meta-learning approach to neural architecture search using a self-supervised loss. We find
that the dynamic LSTM self-supervised loss outperformed the constant cross entropy loss used by MetaNAS. In particular, the geometries
of the loss function tend have increasingly large curvature which seems to improve training and, consequently, allows the meta architecture
search to be a fast adapter. In future work, we intend to analyze the relative merits and limitations of the asymptotic, dynamical stability
of such self-supervised loss neural networks, which attain arbitrarily large magnitudes during meta-learning.

5



7 Appendix

Proof. We invoke a first order Taylor series expansion to prove Equation 6, omitting reference to φ. A loss L is a scalar-valued function
L : Rn → R, which has second order Taylor series approximation centered around a ∈ Rn given by:

L(x) ≈ L(a) +DL(a)(x− a) +
1

2
(x− a)>HL(a)(x− a) (9)

for DL(x) the matrix of partial derivatives of L and HL(x) the Hessian of L. We approximate the summand in the following:

min
θ,α

∑
Ti∼p(Ttrain)

LTival(θ − λtask∇θLTitrain(θ, α,DTitrain;φ), α− ξtask∇αLTitrain(θ, α,DTitrain;φ),Dval) (10)

using the second-order Taylor series expansion:

LTival

([
θ − λtask∇θLTitrain
α− ξtask∇αLTitrain

]
,DTival

)
≈ LTival

([
θ
α

]
,DTival

)
+DLTival

([
θ
α

]
,DTival

)[
−λtask∇θLTitrain
−ξtask∇αLTitrain

]
+

1

2

[
−λtask∇θLTitrain
−ξtask∇αLTitrain

]>
HLTival

([
θ
α

]
,DTival

) (11)

where the matrix of partial derivatives is

DLTival

([
θ
α

]
,DTival

)
=

[
∇θLval

([
θ
α

]
,DTival

)>
∇αLval

([
θ
α

]
,DTival

)>]
.

Thus, ignoring the second-order Hessian term, we can write Equation 10 as:

LTival

([
θ − λtask∇θLTitrain
α− ξtask∇αLTitrain

]
,DTival

)
≈ LTival

([
θ
α

]
,DTival

)
+∇θLTival

([
θ
α

]
,DTitrain

)>(
− λtask∇θLTitrain

([
θ
α

]
,DTitrain

))

+∇αLTival

([
θ
α

]
,DTitrain

)>(
− ξtask∇αLTitrain

([
θ
α

]
,DTitrain

))
,

(12)

implying Equation 6:

min
θ,α

∑
Ti∼p(Ttrain)

LTival(θ − λtask∇θLTitrain(θ, α,DTitrain), α− ξtask∇αLTitrain(θ, α,DTitrain),DTival)

≈ min
θ,α

∑
Ti∼p(Ttrain)

LTival(θ, α,D
Ti
val)− λtask〈∇θLTitrain(θ, α,DTitrain),∇θLTival(θ, α,D

Ti
val)〉 − ξtask〈∇αLTitrain(θ, α,DTitrain),∇αLTival(θ, α,D

Ti
val)〉,

(13)

which minimizes the supervised validation loss LTival and maximizes the similarity between the gradients, with respect to both θ and α, of
the self-supervised training loss LTitrain and the supervised validation loss LTival. Therefore, during inference, when LTival is unavailable, we
can still perform training if the gradients of the losses are similar [5]. That is, we want the self-supervised loss LTitrain to learn to emulate
the supervised loss LTival. Choosing such a self-supervised LTitrain to guarantee this property is difficult and, thus, it is natural to learn the
self-supervised training loss.

6



References
[1] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic program induction., 2015.

[2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks, 2017.

[3] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017.

[4] Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning of neural architectures for few-shot
learning, 2020.

[5] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Learning to learn how to learn:
Self-adaptive visual navigation using meta-learning, 2019.

[6] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning,
8:229–256, 1992.

[7] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search, 2019.

[8] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures for scalable image recognition,
2018.

[9] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms, 2018.

[10] Vinyals, C. O., Blundell, T. Lillicrap, and Wierstra. Matching networks for one shot learning, 2016.

[11] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks, 2014.

7


	Introduction
	Related Work
	Dataset & Features
	Method
	Experiments & Results
	Conclusion
	Appendix

