
LNAS: Lottery Ticket Neural Architecture Search

Stanford CS231N Project: Theory and Reinforcement Learning

Sergio Charles
Department of Computer Science

Stanford University
sergioc1@stanford.edu

Gordon Chi
Department of Computer Science

Stanford University
gsychi@stanford.edu

Gil Kornberg
Department of Computer Science

Stanford University
gilk@stanford.edu

Mentors: Yao Liu & Rachel Gardner. Note: Sergio is
sharing this project with CS229.

Abstract

Despite the mainstream of usage of neural networks in
increasingly difficult tasks in computer vision and natu-
ral language processing tasks, optimal network architec-
tures are traditionally attained after countless manual ex-
periments and rounds of redundant training iterations. We
propose a different approach that incorporates Neural Ar-
chitecture Search (NAS) method [10] and the lottery ticket
hypothesis [4] – for a randomly initialized neural network,
there exists a sub-network architecture that trains and per-
forms at least as efficiently as the super network. Our re-
sults show that both variants of this search – the first by
pruning model parameters, and the second by pruning ar-
chitecture parameters – return a model sub-network archi-
tecture that achieves state-of-the-art performance without
expensive memory or time usage.

1. Introduction

In the past decade, neural networks have been imple-
mented for increasingly difficult tasks in computer vision
and natural language processing domains. Yet despite their
flexibility and utility, optimal network architectures remain
difficult to design; state-of-the-art models are the fruits of
countless manual experiments and rounds of trial-and-error
training iterations. To bridge this gap, Zoph and Le pro-
posed the use of Neural architecture search (NAS) [10], a

method that automatically learns network architectures and
maximizes performance on a specific task in tandem. The
most obvious drawback of this work: it uses an RNN meta-
controller with proximal policy optimization which is too
computationally expensive for most ML development tasks.
In fact, the original NAS [10] used 450 GPUs for 3-4 days.

Consequently, there have been recent attempts to de-
crease the runtime of NAS. Efficient NAS [7] (ENAS) in-
troduces the notion of searching for child models as sub-
graphs over a directed acyclic (DAG) super-graph. Local
computation nodes have parameters that are shared among
child models in the search space, which yields a 1000× im-
provement over NAS. NASNet [11] defines the architecture
of a ConvNet as stacked modules of two types of cells: a
normal cell which preserves input dimension and a reduc-
tion cell which halves output dimension by using a stride
of 2. They show that a well-chosen cell yields desirable
transfer learning on downstream tasks. The Differentiable
architecture search algorithm (DARTS) improves upon both
of these methods by making the search space over archi-
tectures continuous via a softmax over the set of candidate
operations [6].

However, DARTS still has prohibitively expensive mem-
ory usage due to redundant candidate architecture paths.
Hence, we propose a neural architecture search method
based on the lottery ticket hypothesis [4] which states that
for a randomly initialized neural network, there exists a
sub-network architecture that has commensurate accuracy
and trains at least as efficiently as the super-network. More
specifically, we propose two variants of this search: the first
variation conducts a neural architecture search before prun-
ing model parameters during train time based on our lottery

1

ticket hypothesis; the second variation conducts a neural ar-
chitecture search that prunes network architecture parame-
ters before performing a standard training loop. We theorize
that regardless of the variant chosen, by performing iterative
or one-shot pruning when training the architecture and child
models, the sparse sub-network neural architecture winning
ticket can be found in at most as many iterations, and with
at least the same accuracy, of the model architecture found
by DARTS.

2. Related Work
Neural architecture search (NAS) was proposed in [10]

as a method to automatically learn network architectures
to maximize performance on a specific task. The origi-
nal implementation of NAS serialized CNN and RNN net-
work topology representations as a sequence of operations
at each layer. That is, they surmised that the ”structure and
connectivity of a neural network”, namely the architectural
hyperparameters, can be encoded by a sequence of tokens.
Thus, they train an RNN meta controller to produce the se-
quence a1:T of hyperparameters used to design the archi-
tecture, which can be construed as a sequence of actions in
the sense of reinforcement learning [10]. The NAS search
space is the set of operations that can be performed between
layers of a neural network, which induces a strong prior on
network design. The controller samples a candidate model
called the child model, trains it to convergence, and evalu-
ates the reward R, measured by the accuracy, of the child
model on a held-out validation set. The controller uses the
objective of maximizing expected reward as an update sig-
nal.

More precisely, the NAS search algorithm iterates over
several possible child models in its search space and opti-
mizes expected reward, e.g. model size, accuracy, or la-
tency. The meta-controller RNN optimizes the following
objective [10]:

J(θC) = EP (a1:T ;θC)[R] (1)

In the original NAS paper, they optimized the RNN con-
troller parameters θC with REINFORCE [9] on the policy
gradient [10]:

∇θCJ(θC) =
T∑
t=1

E[∇θC logP (at|a(t−1):1; θC)R]. (2)

because R is non-differentiable.
Furthermore, we can represent a child model as a DAG

with nodes as ”local computations” and edges as the ”flow
of information” [7]. Efficient NAS (ENAS) [7] introduces
the notion of searching for architectures as sub-graphs of the
directed acyclic super-graph. That is, this DAG is represents
a superposition of all possible child models. These local

computation nodes have parameters and, thus, ENAS shares
these parameters among child models in the search space,
which yields a 1000x improvement over the original NAS
method.

Differentiable Architecture Search (DARTS) [6] es-
chews the need for a proximal policy-based method. In
DARTS, they learn a computation cell which can be stacked
or recursively concatenated to create a convolutional neural
network or recursive neural network, respectively. A com-
putation cell can be represented as a DAG consisting of a
topologically ordered set of n nodes. Let x(i) represent a
latent representation and each edge (i, j) represent an op-
eration o(i,j) on x(i). Using the topological ordering, we
can compute the node based on the operations of preceding
nodes [6]:

x(j) =
∑
i<j

o(i,j)(x(i)). (3)

If O denotes a set of our candidate operations, DARTS
makes the search space continuous by considering a soft-
max over possible operations:

ô(i,j)(x) =
∑
o∈O

eα
(i,j)
o∑

o′∈O e
α

(i,j)

o′
o(x) (4)

where α(i,j) are learned parameters between nodes i and
j; finding these variables is equivalent to neural architecture
search, which now allows us to employ a standard bi-level
optimization. When we have found the neural architecture,
we collapse its superposition state by discretizing the mixed
operations ô(i,j) to o(i,j) = argmaxo∈O α

(i,j)
o . Let Ltrain

denote the training loss and let Lval denote the validation
loss. We use a bi-level objective proposed in DARTS:

min
α
Lval(θ

∗(α), α)

subject to θ∗(α) = argmin
θ
Ltrain(θ, α).

(5)

which determines the optimal α∗ to minimize validation
loss Lval(θ

∗, α∗), where the optimal model parameters θ∗

is θ∗ = argminθ Ltrain(θ, α
∗). The inner optimization is

very computationally expensive and, thus, DARTS uses an
unrolled approximation of [6]:

∇θLval(θ
∗(α), α) ≈ ∇αLval(θ − ξ∇θ(θ, α), α) (6)

which approximates θ∗(α) by only using a single step of
SGD to avoid performing the inner optimization until con-
vergence.

However, the memory requirements of DARTS are still
cumbersome because GPU consumption is proportional to
|O|. Methods like MnasNet [8] employ optimization with a
multi-objective of accuracy on a target task and inference

2

time latency. Likewise, ProxylessNAS, proposed by Cai
et. al [1], redresses the problem of high memory consump-
tion by using path-level pruning which binarizes the asso-
ciated softmax probabilities of the real-valued architecture
parameters α. They also present ”hardware-aware neural
network specialization”, which optimizes the architecture
for the specific hardware device [1].

We make use of the results of the lottery ticket hypoth-
esis [4], which states that for a randomly initialized neural
network, there exists a sub-network architecture that has at
least as good test accuracy and trains at least as efficiently
as the super-network. Such a winning ticket sub-network is
identified and trained as follows [4]:

1. Initialize a neural network fθ0(x) for parameters θ0
distributed according to the training data θ ∼ Dtrain.

2. Train the network for k iterations until we have param-
eters θj .

3. Prune p% of the parameters in the network, according
to magnitude, forming a maskM.

4. Reset the remaining parameters to their respective θ0
values, which yields the winning ticket fM�θ0(x).

3. Methods
In light of the lottery ticket hypothesis [4], we posit that

by performing iterative or one-shot pruning during neural
architecture search with DARTS, the sparse sub-network
neural architecture winning ticket can be found in commen-
surate time (at most as many iterations as the architecture
found by search) and with commensurate accuracy (at least
the same accuracy of the architecture found by search).

This is distinct from NAS methods that optimize on a
multi-objective of model size and accuracy on a target task,
as seen in [3], because these methods do not leverage the
notion of a winning ticket from the lottery ticket hypothesis.
That is, they are not searching for sparse child neural archi-
tectures, but instead small neural architectures; this would
generally improve inference time latency but does not ad-
dress the computational expensiveness of modern NAS.

We search for an architecture of a ConvNet as stacked
computation cells, like in NASNet [11]. We use two types
of cells: a normal cell which preserves input dimension and
a reduction cell which halves output dimension by using a
stride of 2. NASNet showed a well-chosen cell yields desir-
able transfer learning on downstream tasks. We use DARTS
[6] as the NAS method, which eschews the meta-controller
configuration. Operations are limited to convolutions, aver-
age pooling, max pooling, and the zero operation.

Following the notation of ProxylessNAS [1], let
N (e1, . . . , en) denote the over-parameterized convolutional
neural network, where ei is an edge in its DAG represen-
tation of a topologically ordered set of its n nodes. Let

x(i) represent a latent representation and each edge ei,j
represents the operation o(i,j) on x(i). For our N candi-
date operations O, we make the search space continuous
by defining a mixed operation as a softmax over possible

operations [6]: ô(i,j)(x) =
∑
o∈O

eα
(i,j)
o∑

o′∈O e
α
(i,j)

o′
o(x) where

α(i,j) are learned architecture parameters between node i
and node j. Since each edge is a mixed operation, i.e. a
linear combination of the N = |O| candidate operations
ô(x) =

∑N
i=1 pioi(x), we can intuitively represent a mixed

operation by N paths where each path is weighted with
probability pi. When performing the neural ticket architec-
ture search to find the winning neural ticket α∗, we apply
an architecture-dependent maskMα:

ô(x) = Eo∼O�Mα
[o(x)]. (7)

to prune the architecture parameters α. When we retrain
the model fθ with optimal architecture α∗, we use a model-
dependent maskMθ to prune the parameters θ of the model
fθ. Since we effectively hard-prune the choice of candidate
operations when selecting the architecture with highest can-
didate probability, this will induce significant regressions in
performance. Therefore, it is important to retrain the model
fθ with the sparse architecture. Let Ltrain and Lval and de-
note the training and validation loss, respectively. We use a
bi-level objective proposed in DARTS:

min
α
Lval(θ

∗(α), α)

subject to θ∗(α) = argmin
θ
Ltrain(θ, α).

(8)

Iterative pruning is performed to identify the neural win-
ning ticket. In the generalized method, the cell architecture
is trained in tandem with the pruning program of the lot-
tery ticket hypothesis until early stopping, and accuracy is
measured on a held-out validation set. Then we retrain the
model with the architecture found during the search using a
similar pruning program. We developed two approaches to
performing the lottery ticket pruning, which are as follows:

Variant 1: We perform DARTS neural architecture
search to find the optimal architecture α∗. Then, when re-
training the model fθ with architectureα∗, with a sparsity of
p ∈ (0, 1), we prune p1/n of the lowest magnitude parame-

3

ters for n rounds. The algorithm is enumerated as follows:

Algorithm 1: Variant 1 of LNAS

Randomly initialize θ0 ∼ Dtrain, α0 ∼ Dval;
Search for optimal architecture α∗

while not converged do
1. Perform the α gradient update
α← α− η∇αLval(θ − ξ∇θLtrain(θ, α), α) for
k iterations;

2. Perform the model θ gradient update
θ ← θ − ξ∇θLtrain(θ, α) for k iterations;

end
Re-train model parameters θ of optimal architecture
α∗ to find (α∗, θ∗)

for n pruning iterations do
1. Perform the θ gradient update
θ ← θ − ξ∇θLtrain(θ, α) for k iterations;

2. Prune p1/n of smallest magnitude model
parameters by applying mask: θ �Mθ;

end
return winning neural ticket (α∗, θ∗)

For fixed θ, we optimize the architecture parameters α
with SGD on the validation set, using the unrolled approxi-
mation of Equation 6. Then during retraining, we optimize
the model parameters θ with SGD on the training set until
convergence, while pruning p1/n of model parameters every
k iterations of SGD for a total of n rounds of training.

Variant 2: We perform path-level pruning, in the sense
of ProxylessNAS [1], whereby with a sparsity of p ∈ (0, 1),
we prune p1/n of the lowest-magnitude architecture param-
eters α during the neural architecture search. This cor-
responds to pruning candidate operations or, equivalently,
paths for each edge of the computational graph. As before,
during this step, we use the unrolled approximation in Equa-
tion 8. Then we re-train the model fθ, with the optimal ar-
chitecture α∗ found during the previous step, via SGD until

convergence. The algorithm is as follows:

Algorithm 2: Variant 2 of LNAS

Randomly initialize θ0 ∼ Dtrain, α0 ∼ Dval;
Search for optimal architecture α∗

for n pruning iterations do
1. Perform the α gradient update
α← α− η∇αLval(θ − ξ∇θLtrain(θ, α), α) for
k iterations;

2. Perform the model θ gradient update
θ ← θ − ξ∇θLtrain(θ, α) for k iterations;

3. Prune p1/n of smallest magnitude architecture
parameters by applying mask: α�Mα.

end
Re-train model parameters θ of optimal architecture
α∗ to find optimal (α∗, θ∗)

while not converged do
1. Perform the θ gradient update
θ ← θ − ξ∇θLtrain(θ, α);

end
return winning neural ticket (α, θ)

Although we did not complete a full grid search of prun-
ing both model parameters and architecture parameters at
various sparsity levels, to determine the relative utility of
each variant in a wider scope, it is useful to consider the
more generalized version of our algorithm:

Algorithm 3: Generalized LNAS

Randomly initialize θ0 ∼ Dtrain, α0 ∼ Dval;
Search for optimal architecture α∗

for n pruning iterations do
1. Perform the α gradient update
α← α− η∇αLval(θ − ξ∇θLtrain(θ, α), α) for
k iterations;

2. Perform the model θ gradient update
θ ← θ − ξ∇θLtrain(θ, α) for k iterations;

3. Prune p1/n of smallest magnitude architecture
parameters by applying mask: α�Mα.

end
Re-train model parameters θ of optimal architecture
α∗ to find optimal (θ∗, α∗)

for n pruning iterations do
1. Perform the θ gradient update
θ ← θ − ξ∇θLtrain(θ, α) for k iterations;

2. Prune p1/n of smallest magnitude model
parameters by applying mask: θ �Mθ.

end
return winning neural ticket (α, θ)

That is, we perform k SGD update steps for the DARTS
neural architecture search, using the unrolled approxima-
tion in Equation 6. Then, with a sparsity of p ∈ (0, 1),
we prune p1/n of of the smallest magnitude architecture pa-

4

rameters, which is a form of path-level pruning of the N
possible operation candidate paths [1]. We do this for n
rounds until we have found the optimal neural architecture
α∗. Next, we optimize the model parameters θ with SGD on
the training set for k steps. Then we prune p1/n of the small-
est magnitude model parameters. We repeat for n rounds to
converge to an optimal θ∗ and α∗, which is the theorized
winning neural ticket.

4. Data
For all experiments, we train and validate all exper-

iments on the CIFAR-10 dataset [5], which consists of
60,000 32 × 32 colored images of 10 different classes.
We utilize a 50,000 to 10,000 train-test split of the
images; all final models were validated on Top-1 accu-
racy performance on the test dataset. No pre-processing
or filtering was applied prior to the training of our networks.

5. Experiments
5.1. Lottery Ticket Neural Architecture Search

For each variant, we train models on different sparsity
levels and evaluate their relative performance on the
CIFAR-10 dataset to a baseline model constructed via
differential architectural search (DARTS). Our goal is
determine how the number of parameters remaining affects
model accuracy and training time of the optimal neural
winning ticket.

Baseline DARTS Model: We reimplemented the DARTS
search on the CIFAR-10 dataset using the nni library as
proposed in the original paper [6]. Our search space O of
candidate operations consisted of 3× 3 and 5× 5 separable
convolutions, 3×3 and 5×5 dilated separable convolutions,
3 × 3 max and average pooling, identity mapping, and a
zero mapping. All operations were stride one and padded to
preserve spatial resolution. The convolutional cell consisted
of 7 nodes, and was placed after a ReLU activation block
and before batch normalization.

Our neural network was optimized with respect to cross-
entropy loss, a metric known for its strong performance
in classification tasks. We perform 10 epochs of neural
architecture search on the O search space described above,
followed by 20 epochs of a standard training loop. Both the
search and train loops utilized a stochastic gradient descent
(SGD) + Momentum optimizer with 0.9 momentum and
3.0 × 10−4 weight decay; the initial learning rate of 0.025
was adjusted according to a cosine annealing scheduler.
Batch size was set at 64.

Initial Architectural Search: For Variant 1, observe that
all experiments focus only on pruning model parameters of

the baseline models given different sparsity levels. Hence,
our initial model architecture is identical to the baseline
model, where we performed 10 epochs of neural architec-
ture search on the O search space consisting of 3 × 3 and
5× 5 separable convolutions, 3× 3 and 5× 5 dilated sepa-
rable convolutions, 3× 3 max and average pooling, identity
mapping, and a zero mapping. Learning rates and optimiz-
ers were also kept constant.

For Variant 2, we performed a redesigned DARTS
search on the CIFAR-10 dataset that iteratively prunes
architecture parameters after each epoch of our neural
architecture search, in conjuction with lottery ticket
hypothesis. Otherwise, all other hyperparameters of the
search were kept constant with the baseline model; our
search space O of candidate operations again consisted
only of 3 × 3 and 5 × 5 separable convolutions, 3 × 3 and
5×5 dilated separable convolutions, 3×3 max and average
pooling, identity mapping, and a zero mapping. Likewise,
all operations are stride one and padded to preserve spatial
resolution; the convolutional cell consisted of 7 nodes, and
was placed after a ReLU activation block and before batch
normalization. Learning rates and optimizers were also
kept constant.

Training Loop: For Variant 1 and a given sparsity level
p, we run a modified training loop for 20 epochs, where on
the 10th epoch we perform one-shot pruning that zeroes out
p parameters of the model, before re-initializing the model
parameters to θ0. For Variant 2 and a given sparsity level
p, a standard training loop for 20 epochs is implemented;
there is no need to prune out parameters during train-time
since the initial neural-architecture-search leaves us with a
sufficiently pruned neural architecture.

Models trained from both variants were optimized with
respect to cross-entropy loss, and all other hyperparameters
were held constant. Both The training loop utilized a
stochastic gradient descent (SGD) + Momentum optimizer
with 0.9 momentum and 3.0 × 10−4 weight decay; the
initial learning rate of 0.025 was adjusted according to a
cosine annealing scheduler. Batch size was set at 64.

Sparsity Levels: For each variant, we experimented with
8 different sparsity levels: 0.125, 0.25, 0.375, 0.5, 0.675,
0.75, 0.875, 0.95. This leaves us with 16 trained models
alongside our baseline model for analysis.

Evaluation Metrics: We evaluate our models on three
metrics:

• First, we evaluate the prediction accuracy of the mod-
els across sparsity levels p and both variants, in order
to determine which variant and sparsity levels leave us
with a strong-performing model.

5

• Second, we evaluate test inference time by reporting
the floating point operations per second (FLOPS) re-
quired; although the relative speed of models may be
apparent given the chosen sparsity levels, this analysis
presents with a better estimate of runtime.

• Finally, we evaluate train inference time by reporting
the total number of hours required for the 10 epochs
of neural architecture search and 20 epochs of the con-
current training loop. While we had attempted to keep
all hyperparameters regarding batch size, learning rate
and number of epochs constant across both variants, it
is important to acknowledge that the lottery ticket hy-
pothesis performs fundamentally different operations
in the two variants, which may result in drastically dif-
ferent training times.

Figure 1. A visualization of model validation accuracy over epochs
for both variants. Note that Variant 1 is less robust to sparsity lev-
els; the sparsity levels of 0.95 is unable to reach past 50% accuracy
in the aftermath of the one-shot pruning. Meanwhile, Variant 2
performs particularly well with the sparsity level of 0.95, reaching
a validation accuracy of near 86.00% after the twenty epochs.

5.2. Prediction Accuracy and FLOPS

Overall, although not all sparsity levels and variant
choices were able to obtain the winning lottery ticket af-

ter 20 epochs, many of our models returned comparable ac-
curacy on the validation dataset. For Variant 1, the LNAS
performed best on medium to high sparsity levels, with the
models pruned on 0.5, 0.625, and 0.75 sparsity levels re-
turning a validation accuracy of over 76% compared to just
an average of around 70% for models trained on higher or
lower sparsity levels. An opposite trend is observed in Vari-
ant 2, where the LNAS performed stronger overall and best
on high and low sparsity levels. Surprisingly, we were able
to obtain the three winning tickets under Variant 2, with the
sparsity level of 0.95 obtaining a state-of-the-art validation
accuracy of 85.6% in 20 epochs. This outperforms even the
super baseline model we constructed with DARTS. More
specific results across all the sparsity levels can be seen in
Table 1 below.

We also present prediction accuracy on the validation set
over time in Figure 1. Due to the pruning and re-initializing
of weights to θ0 in Variant 1, the drop in accuracy following
Epoch 10 may result in models with a given sparsity level
p being unable to attain high validation accuracy in the suc-
cessive train steps. More importantly, our experiment sug-
gests that if a model’s validation accuracy is immediately
robust to the re-initializing of weights, then it is likely that
the given sparsity level will be closer to a winning lottery
ticket.

In contrast, the validation accuracy curves for Variant 2
do not have large jumps in performance, resembling a stan-
dard training loop.

5.3. Variant Train Time Comparison

Though all experiments were run with the same num-
ber of epochs in both the search and train loops, Variant 1
has the lottery ticket hypothesis implemented in only the
training loop while Variant 2 has the same hypothesis im-
plemented in the search loop. This results in large differ-
ences in train time: as outlined in the Methods section, the
neural architecture search requires a longer runtime when
implemented alongside the lottery ticket hypothesis while
the training loop only requires a one-shot pruning of model
parameters over 20 epochs.

Hence, with all experiments done on a Tesla K80 GPU,
the initial neural architecture search took around 2 hours to
run for Variant 1 compared to about 5.2 hours for Variant 2;
differences in training time between the two variants were
negligible.

5.4. Discussion

The analysis on the differences in train time across vari-
ants (Section 5.3) suggests that the relative validation ac-
curacy sparsity levels cannot be compared across variants,
since one approach has the advantage of having a relatively
longer train time. However, general discussions on spar-
sity levels and training robustness can still give us a strong

6

Validation Accuracy (%)

Variant Sparsity Level Epoch 10 Epoch 20 FLOPS

Baseline N/A 74.04 78.90 752.355M

1 0.125 68.03 70.05 549.204M
(model parameter pruning) 0.25 67.50 72.13 473.034M

0.375 67.43 74.02 391.527M
0.5 68.32 76.52 315.356M
0.625 69.03 76.74 233.849M
0.75 70.54 76.15 157.678M
0.875 66.32 67.23 76.171M
0.95 66.58 46.43 84.050M

2 0.125 72.45 78.77 549.204M
(model architecture pruning) 0.25 72.28 78.04 473.034M

0.375 74.13 77.47 391.527M
0.5 69.11 74.12 315.356M
0.625 67.12 73.60 233.849M
0.75 71.80 79.86 157.678M
0.875 79.86 81.15 76.171M
0.95 80.14 85.59 84.050M

Table 1. Test inference time and validation accuracy across variants and multiple sparsity levels for both variants, compared alongside the
baseline model. Winning tickets are shown in bold. The result reported for validation accuracy at epochs 10 and 20 were based off of
highest validation accuracy over the course of training up until the stated epoch. For Variant 1, 20-epoch performance was consistently
strongest on sparsity levels between 0.375-0.75, with performance teetering off at the higher sparsity levels. Variant 2 observes an opposite
trend, with performance strongest at low and high sparsity levels.

indication on which variant performs better; there is suffi-
cient evidence to hypothesize how the proposed Algorithm
3 (generalized LNAS) would perform on the CIFAR-10
dataset.

Overall, Variant 1 is more sensitive to sparsity level. We
theorize that this is because the initial neural architecture
search is done just once and is focused on searching for a
general model with a certain range of parameters; as a re-
sult, only mid to high sparsity levels such as 0.5, 0.625 and
0.75 were close to reaching the lottery ticket hypothesis.
This hypothesis is supported by the sharp drop-off once the
sparsity level hits 0.875 and 0.95, when the validation ac-
curacy never eclipses the validation accuracy obtained prior
to the pruning and re-initializing of weights. In contrast,
Variant 2 does not suffer from the same issue, because the
architecture outputted from our lottery ticket hypothesis is
optimized on performing well with a lower number of pa-
rameters.

With this in mind, it is most likely that the generalized
LNAS will perform better than variants 1 and 2 individually.
By pruning network architecture parameters (Variant 2) be-
fore pruning model architecture parameters (Variant 1), our
concern with the sensitivity to sparsity level is mitigated;
the model architecture may overall be better suited for the
pruning process.

6. Conclusion

Our work shows that with the implementation of the
lottery ticket hypothesis alongside a differential architec-
tural search (DARTS) algorithm, we are able to obtain
sub-network architecture that achieve state-of-the-art per-
formance without expensive memory or time usage. Fur-
thermore, we show that both parts of a generalized LNAS
algorithm – the first part of pruning model parameters, and
the second part of pruning architecture parameters – have
strong performances in isolation and may be combined in
future work to create an even better sub-model.

While this work is a good start in the field of neural
network optimization, our future experiments aim to fur-
ther improve upon training efficiency. We aim to explore
the intersectionality of DARTS in other machine learning
subfields. We hope that by implementing algorithms such
as MetaNAS [2] that combine gradient-based neural archi-
tecture search (NAS) methods with gradient-based meta-
learning methods, we will be able to solve more challeng-
ing problems with just a fraction of the computational and
time-related resources required when compared to more tra-
ditional approaches.

7

References
[1] H. Cai, L. Zhu, and S. Han. Proxylessnas: Direct neural

architecture search on target task and hardware, 2019.
[2] T. Elsken, B. Staffler, J. H. Metzen, and F. Hutter. Meta-

learning of neural architectures for few-shot learning, 2020.
[3] I. Fedorov, R. P. Adams, M. Mattina, and P. N. Whatmough.

Sparse: Sparse architecture search for cnns on resource-
constrained microcontrollers, 2019.

[4] J. Frankle and M. Carbin. The lottery ticket hypothesis:
Finding sparse, trainable neural networks, 2019.

[5] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian
institute for advanced research).

[6] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable
architecture search, 2019.

[7] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Effi-
cient neural architecture search via parameter sharing, 2018.

[8] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler,
A. Howard, and Q. V. Le. Mnasnet: Platform-aware neural
architecture search for mobile, 2019.

[9] R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229–256, 1992.

[10] B. Zoph and Q. V. Le. Neural architecture search with rein-
forcement learning, 2017.

[11] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learn-
ing transferable architectures for scalable image recognition,
2018.

8

