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Abstract

Motivated by recent advances in decoupled meta reinforcement learning, we sought
to modify and expand upon DREAM [1]. We first developed extensions of the
MapGrid environment that required significantly more involved optimal exploration
strategies. By benchmarking vanilla DREAM we found that a recurrent policy
was necessary for task-specific exploration. This was confirmed by a number of
t-distributed stochastic neighbour embeddings of final exploration policy cell states
that indicated strong clusters determined by task ID. This led us to conclude that
the cell state of the exploration policy had to encode a belief of the task at hand.
While experiments to directly use final cell state as a trajectory embedding failed
to converge, a new exploration algorithm based on the task adaptation in PEARL
[2] was found to achieve optimal rewards in around as much or fewer timesteps as
the DREAM based implementation. This method’s latent variable was designed to
explicitly reflect a belief of the task at hand, which was enough context to provide
for an exploration policy that had no hidden state. To improve the robustness of the
trajectory encoder, we developed a contrastive loss based on SimCLR [3], finding
that it has a positive effect on exploration reward. The contrastive loss we used
included a number of augmentations, such as a random starting position in the grid
world environment and a randomly sampled hidden state to encode various amounts
of initial prior information. Next, we developed methods for semi-supervised meta-
reinforcement learning where we only have a limited number of supervised problem
IDs and a large number of unsupervised problem IDs. Thus, we effectively decrease
the number of fully observed problem IDs needed to do full end-to-end training.
By leveraging the SimCLR approach technique, we used only a small number of
supervised problem IDs and a large number of unsupervised problem IDs to train
the exploration and exploitation policies. We developed an additional k-means
clustering technique to infer unsupervised problem IDs, which motivated a MAML-
based clustering method to adapt quickly in various unsupervised task settings.
This avenue of research yielded some positive observations that we hope to work
on in future work.

The implementation is publicly available on GitHub: https://github.com/sergiogcharles/fadee

https://github.com/sergiogcharles/fadee


1 Introduction & Objective

Reinforcement learning techniques have been deployed in several high-profile use cases – including
games like Atari, Go and Chess [4, 5, 6] – and have surpassed human performance in these instances.
Given that RL methods generally have poor sample complexity and unstable convergence, there is
a strong incentive to try to learn many new tasks efficiently given the experiences of other tasks.
This general aim is known as meta reinforcement-learning (meta-RL). Many methods in meta-RL
focus on efficiently adapting a policy based on online or offline data from a rollout on a new task
[7, 8, 9, 10, 11, 12].

A number of novel algorithms, however, aim to optimize methods for efficiently collecting
environment-specific data to aid the RL policy in adapting to new tasks. Specifically, this involves
thoroughly exploring an environment to efficiently gain the information necessary to solve a bevy of
potential tasks. Unfortunately, training any policy using vanilla end-to-end RL methodologies does
not directly optimize for this form of robust exploration. This is because optimal exploration involves
taking actions that are only indirectly useful to achieving a goal - these kind of indirect actions are
not strongly incentivized with the highly reward-driven nature of vanilla RL policies.

In DREAM, the problem of ineffective exploration is dealt with by explicitly decoupling the ex-
ploration and exploitation paradigms by separately training an exploration policy to maximize
information learned about the given environment. Previous methods for optimizing an exploration
policy in a decoupled setting suffer from issues regarding how their objectives are precisely defined,
with their exploration policies either gathering task irrelevant data [13] or having convergence issues
due to the co-dependent nature of exploration and execution [12, 14, 15, 16].

Broadly speaking, DREAM learns an encoder that turns a task-ID into a latent representation that can
inform exploitation, and trains a exploration policy that learns to produce this latent representation by
way of a decoder.

Encoder :F (z|µ) (1)
Exploration : πexp(a|,h) (2)

Decoder : G(z|τ exp) (3)
(4)

The exploitation policy, then, makes use of this decoded exploration trajectory to better inform its
actions.

Exploitation : πtask(a|s,h, z) (5)

The task ID based embeddings are trained end to end with the exploitation (also referred to as
execution) policy. The exploration policy and the associated trajectory encoder are then trained to
match these embeddings that must contain precisely the right information for solving their respective
task.

Our goal is to improve DREAM’s exploration behavior under a variety of different limitations. The
contributions of our research are as follows:

1. Developed numerous didactic environments that require task-specific exploration by extend-
ing the GridWorld environment used in DREAM.

2. Determined that the recurrent hidden state used in the exploration policy encodes an increas-
ing amount of task specific information over time.

3. Developed a refined sampling extension to the exploration policy based on PEARL [2].

4. Developed contrastive loss for improving the robustness of the exploration trajectory embed-
der.

5. Defined what it means to be semi-supervised in the context of DREAM, and used the
contrastive loss as a way to deal with relaxing a constraint on training multiple task ID based
embeddings.
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2 Related Work

2.1 DREAM

Algorithm 1 DREAM meta-training

for meta-training trials do
Sample problem ID µ

Get exploration τ trajectory from rollout of exploration policy on the problem ID µ’s environment
Train the decoder to match the encoding of the problem ID
Half the time train the encoder and execution policy end to end
Other half the time train the decoder and execution policy end to end

end for

DREAM leverages a recurrent exploration and execution policy and LSTM trajectory embedder and
must train encodings for all task IDs it meta trains on. At meta-test time, the exploration policy
is deployed on a new task’s environment, the decoder creates a representation of that rollout, and
that representation is then used by the execution policy for what hopefully should be instantaneous
optimal task completion.

2.2 Contrastive Learning and SimCLR

Algorithm 2 SimCLR training algorithm for unsupervised data

Encoder Network F
for training trials do

Sample a batch of unsupervised data
For each data point, apply a certain transformation to it, doubling the size of the batch
For a given example x in this now expanded batch, compute the cosine similarity between its

encoding and the rest of the batch
formulate this as a vector v and apply the softmax function to it.
Set the loss for that given example x to be logv[i] where i is the index of the transformed version

of x. This incentivizes the representation of a given data point to be more similar to its transformed
counterpart relative to other data points.

Add up the losses and backpropagate on f.
end for

This unsupervised training algorithm can be combined with some labeled data and was found to
extrapolate effectively. Provided the right kind of transformations, this approach can serve as a way
to better cluster embedding data.

2.3 PEARL

PEARL [2] explicitly tries to do task discovery by sampling optimal policies for a wide distribution
of tasks, rolling them out, collecting context data from the rollouts, and using that to gradually find
the task. We seek to use this method to make the exploration policy more task specific as there could
be separate optimal exploration strategies for different tasks.

3 Recurrent DDQN Policy & The Hidden State Hypothesis

Additionally, we also train a trajectory embedder directly on the last hidden / cell state associated
with a trajectory rollout in a bid to capture some of the task information encoded there. Multiple
architectures were tried, including directly using the hidden state itself. These approaches failed to
produce trajectory embeddings needed for convergence, likely due to the fact that hidden states might
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encode other information not relating to a task and that the nature of a hidden state evolves over
time as the recurrent exploration trains - making it impossible to train from. Directly optimizing the
hidden state by making it part of the computational graph of the execution policy’s update resulted in
exploding gradient instabilities.

4 Improved Didactic Environments

We wanted to begin by testing the robustness of DREAM for environments that require task-specific
exploration. We define task-specific exploration as a setting in which the exploration behavior
is different for different tasks. The baseline environment simply requires that, for each task, the
exploration policy visit the map. Then, the exploitation policy should be able to use the learned
information to effectively maximize reward.

Our first updated environment presents two different types of ways we can reach a desired goal. The
first type is still the buses, the available buses go to corner states that end the episode. The second
type is a singular teleportation square that is present for only a subset of tasks and always takes the
agent to the right goal state. This teleportation square is not indicated from the map and must be
searched for (similar to the Distracting Bus environment used in DREAM).

Our second updated environment introduces sign posts that an agent must follow to find the locations
to search for the teleportation square - setting up a tough, chained exploration problem.

Figure 1: The first visualization is for the basic map environment. The next two visualizations are for
the sign-post environment.

To compute the theoretically optimal exploitation reward, we require E[R[πtask(a|s,h, z)]] – the
expected exploitation reward of the optimal exploitation policy. For the first updated environment,
this expectation is 0.67 and for the second it is 0.36.

5 Task-specific PEARL-like Exploration Policy for DREAM

In this section, we adapt the exploration policy of DREAM to use Efficient Off-Policy Meta-
Reinforcement Learning via Probabilistic Context Variables (PEARL) task belief updates to make
exploration more targeted and task-specific. We also seek to do so in a sample-efficient manner with
posterior sampling, similar to PEARL.

5.1 Merging PEARL & DREAM

PEARL [2] leverages a degree of uncertainty in belief over a task to efficiently adapt to new tasks at
meta-test time. Rakelly et al. estimates the belief over the task by using experiences from before-seen
tasks via an off-policy RL approach. In particular, they estimate the belief of task by learning a
"probabilistic latent representation of prior experience" [2].
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We sample the task µ ∼ p(µ) from a uniform prior of tasks. Notationally, we define cµi :=
(si,ai, ri, s

′
i) as a transition for task µ, whereby cµ := {ci}Hi=1 for H the finite horizon of the MDP.

We adapt DREAM to use posterior sampling during meta-exploration so that we learn an exploration
policy πexp

ϕ that rapidly adapts to solving the task by conditioning on the context cµ.

During meta-exploration, the belief of the current task is encoded in a latent representation w. PEARL
uses the data collected c from entire training episodes to infer the latent z, namely approximate
p(z|c). Om the other hand, during one meta-exploration episode, at each time step, we use the
transitions collected from the past t time steps in the task µ to infer p(z|cµ:t) posterior. Then we
update the policy based on the inferred latent task encoding from the posterior at each time step of
the exploration episode. The reason we do this is because, in DREAM, we meta-train with trials of
one exploration and one exploitation episode. At meta-test time, we are at liberty to test on many
exploitation episodes.

As such, we train an inference network Gξ(z|cµ:t), parameterized by ξ, that approximates p(z|c:t).
Thus, we distinguish the inference network Gξ(w|c:t) from the decoder gω(z|τ exp) and, hence, latent
embeddings. It should be noted that we can coalesce the decoder network with inference network,
whereby the inference network is trained on more fine-grained data. However, if we set the context c:t
to be the entire trajectory τ exp, i.e. t := H , then conditioning the inference network on the trajectory
is equivalent to decoding gω(z|τ exp). While we maintain the distinction of these two networks, one
can reduce overhead by only training the inference network Gξ(w|c:t).

5.2 Variational Lower Bound & Inference Network Architecture

We train the inference network using the model-free approach to optimize the variational lower bound
to model the state-action value function Qϕ of the exploration policy:

Eµ∼p(µ)

[
E(s,a,r,s′)∼B,w∼Gξ(w|c)[Q

exp
ϕ (s, a,w) + βDKL(Gξ(w|cµ:t)||p(w))]

]
(6)

where p(w) ∼ N (0, I) is the Gaussian prior, and the KL divergence term is an information bottle-
neck which limits mutual information between the latent task encoding w and cµ [2], effectively
compressing w to contain only necessary information from the previous transitions. Rakelly et al.
suggest that we should be able to infer the task regardless of the order in which we observe the
transitions; thus, Gξ(w|cµ:t) should be permutation-invariant function [2]. We factorize this model as
a product of independent Gaussian factors

Gξ(w|cµ:t) ∝
t∏

i=1

Ψξ(w|cµt ) (7)

where Ψξ(w|cµt ) = N
(
F µ̂
ξ (c

µ
t ), F

σ̂
ξ (c

µ
t )
)

. Here, Fξ is a multi-headed feed forward neural network
parameterized by ξ that outputs the parameters of the Gaussian factors µ̂ and σ̂ when passed a context
cµt .

5.3 Posterior Sampling

At meta-test time, we sample a task µ ∼ p(µ) from the prior. Then we roll out the exploration policy
for 1 time step τ exp

t ∼ πexp
ϕ (at|st, τ exp

:t−1) and add it to the task-specific buffer Bµ. Then we update
the posterior belief of the task, and rollout the exploration for one more timestep conditioned on the
posterior belief, i.e. w ∼ p(w|cµ). At each time step during meta-exploration, we update the belief
so that we can quickly adapt to the task at hand. This task-specific exploration process is enumerated
in Algorithm 1.

Meta-RL often assumes that the data distributions match at meta-train and meta-test time. Thus,
since meta-testing uses on-policy data, meta-training must also use on-policy data. However, Rakelly
et al. highlight that the inference network Gξ(w|cµ) and ϵ-greedy DDQN policy πexp

ϕ need not be
trained on the same data. That is, we use a recurrent deep dueling double Q-network to model the
state-action value function Qexp

ϕ (s,a) on off-policy data sampled from the task replay buffer Bµ.
Then we use a sampler SC(B

µ) to sample batches of contexts to train the inference network. If we
sample from the entire buffer, the distributional shift between the on-policy test data is too stark.
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Thus, Rakelly et al. [2] propose sampling from recently collected data in the replay buffer, which
maintains distributional similarity to the on-policy test data.

5.4 Training Exploration Policy, Inference Network, & Exploitation Policy

The exploration and exploitation policies are both parameterized as recurrent deep dueling double
Q-networks. The exploration policy has Q-function approximated by Q̂exp

ϕ (s,a, τ exp). Likewise, the
exploitation policy’s Q-function is approximated by Q̂exp

θ (s,a, τ task). We use the encoder network
FΨ(z|µ) and decoder network qω(z|τ exp). We update the inference network Gξ(w|cµ) in tandem
with the DDQN Qexp

ϕ (s,a, τ task,w). The inference network uses gradients from the exploration
DDQN to perform its update, as seen in Algorithm 1. The exploration DDQN approximates the
state-action value function by minimizing the following loss [1]:

Lexp
DDQN(ϕ) := E

(s,a,r,s′)∼B
w∼Gξ(w|c)

[||Q̂exp
ϕ (st,at, τ

exp
:t ,w)− Q̄exp

ϕ′ ||2] (8)

for target network Q̄exp
ϕ′ = rexp

t + γQ̂exp
ϕ′ (st+1, τ

exp
:t+1,aDDQN,w) where (see [1]):

rexp
t = ||FΨ(µ)− gω(τ

exp
:t )||22 − ||FΨ(µ)− gω(τ

exp
:t+1)||22 − c (9)

and

aDDQN := argmax
a

Q̂exp
ϕ′ (st+1, τ

exp
:t+1,a),w). (10)

As such, we update the inference network Gξ(w|cµ) by minimizing:

Linfer(ξ) := Lexp
DDQN + βDKL(Gξ(w|cµ)||p(w)) (11)

where we add the bottle-neck mutual information term so w only contains the necessary information
about the task from the context cµ.

For the exploitation DDQN policy, we sample (s,a, r, s′, µ, τ exp) from the exploitation replay buffer
and perform updates to minimize [1]:

Ltask
DDQN(θ,Ψ) := E

(s,a,r,s′)∼B
[||Q̂task

θ (s,a, FΨ(µ))− Q̂task
θ′ ||2] (12)

for target network Q̂task
θ′ := rexp

t + γQ̂task
θ′ (s′, FΨ′(µ),aid) and greedy action aid =

argmaxa Q̂task
θ (s′,a, FΨ(µ)).
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Algorithm 3 Task-specific Exploration for DREAM: Meta-Training

Require: Training tasks µ ∼ p(µ), learning rates α1, α2

Initialize Gξ(w|cµ) ▷ Belief of the task encoding given context
for meta-training trials do:

Sample µ ∼ p(µ)
Encode z ∼ FΨ(z|µ)
Initialize buffer Bµ = {}
for t = 1, . . . ,H do:

# Infer from posterior
Sample cµ ∼ SC(B

µ)
Sample w ∼ Gξ(w|cµ)
# Exploration episode
Rollout exploration policy τ exp

t ∼ πexp
ϕ (at|st, τ exp

:t−1,w) for 1 timestep
Add (st, at, rt, s

′
t) to Bµ

# Training inference network
If |Bµ| > minimum buffer size:
for k = 1, . . . ,K do:

Sample batch bµ ∼ Bµ, cµ ∼ SC(B
µ)

Sample from posterior w ∼ Gξ(w|cµ)
Lµ,exp

DDQN := E(s,a,r,s′)∼B
w∼Gξ(w|c)

[||Q̂exp
ϕ (st,at, τ

exp
:t ,w)− Q̄exp

ϕ′ ||2]

Lµ
KL = βDKL(Gλ(w|cµ)||p(w))

ξ ← ξ − α∇ξ(Lµ
DDQN + Lµ

KL)
end for

end for
Update Q̂exp

ϕ , πexp
ϕ and qω to minimize I(τ exp; z) via rewards

# Exploitation episode
Every other episode, choose z ∼ qω(z|τ exp)
Roll out exploitation policy πtask

θ (a|s, z)
Update πtask

θ and FΨ:

max
Ψ,θ

Eµ∼p(µ),z∼FΨ(z|µ)[V
πtask
θ (z;µ)]− λI(z;µ)

end for

5.5 Results & Analysis

Figure 2: DQN, KL divergence, and total losses using task-specific exploration on the basic map grid
environment.
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Figure 3: Exploration and exploitation rewards for baseline DREAM (blue) and task-specific explo-
ration DREAM (red) on the basic map grid environment trained for 180k episodes

Figure 4: Exploration and exploitation rewards for baseline DREAM (green) and task-specific
exploration DREAM (orange) on the teleportation square environment trained for 45k episodes

As can be seen from the figures above, our PEARL-based method with a non-recurrent exploration
policy converged to the optimal reward of several different environments in about the same time
DREAM did using a recurrent exploration policy. This provides evidence that the cell state for the
recurrent policy must be implicitly doing some of the same work of task identification our method
explicitly does, as having no recurrency makes it impossible for DREAM to solve the task-specific
exploration. Our method also uses a context embedding precisely for task identification, indicating
that it could lead to better results if it were used in the same way as the cell state conditioned trajectory
embedding.

6 Contrastive Loss and Cell State Conditioned Trajectory Embedding

To improve the robustness of the trajectory embedder, we developed an auxillary contrastive loss to
enforce consistency across representations for a given task and to push out different task embeddings
from each other. In a similar vein to SimCLR [17], during meta-training of our exploration policy,
we roll out the trajectory τ exp = (s0, a0, r0, s1, . . . ) ∼ πexp

ϕ (a|s, z) from a starting state s0 in task
µ for z ∼ F (z|µ). Then we generate a trajectory representation α = gω(τ

exp) with the trajectory
embedder.
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6.1 Positive Sampling Augmentations

To generate a augmented "view" of this trajectory, we start roll out a new trajectory with the
exploration policy (τ exp)+ = (s+0 , a

+
0 , r

+
0 , s

+
1 , . . . ) ∼ πexp

ϕ (a|s, z) from a random starting state of
s+0 in task µ where z ∼ F (z|µ). Then we embed this trajectory as α+ = gω((τ

exp)+). We want to
force α and α+ to be nearby in the trajectory embedding space because this makes the exploration
and, thus, exploitation policy robust to random state initializations on the grid. In the terminology of
SimCLR [17], α and α+ are positive pairs. That is, random state initializations for the same task µ
should produce similar trajectory embeddings; we term this positive sampling [17].

6.2 Hidden state augmentations

While random starting states on the grid environments should be sufficient augmentations, one could
also use different hidden state initializations of the exploration DDQN, whereby per the hidden state
hypothesis, at each time step in a trajectory, the hidden state learns more information about the task
at hand. That is, the hidden states of the recurrent exploration policy learns a history, i.e. buffer, of
information ht ∈ Rk about the task at each time step t. We let Hbuff = [h1 · · ·hH ] be a buffer of this
information. Thus, if we want to create positive augmentations of the trajectory τ exp in task setting µ,
we can sample a hidden state hi ∼ Hbuff from the buffer and pass it in as the initial hidden state of
the recurrent exploration policy h′

0 := hi. Note, the last element of the buffer does not necessarily
contain the most information about the task, i.e. sometimes during exploration, the agent goes to the
map–which will give us maximal information about the task–and then it might wander around for a
while after so the final state does not necessarily correspond to being on the map. Thus, we do not
always expect hH to contain maximal encoded information about the task. However, we observe that
as the exploration policy is trained, the agent learns to end the episode after encountering the map, so
the expectation of hH containing maximally useful information increases over time.

6.3 Negative Sampling Augmentations

On the other hand, we generate K "negative" examples as follows: in a different task µi ̸= µ and from
a random starting state s−i , roll out the trajectory (τ exp

i )− = (s−0 , a
−
0 , r

−
0 , s

−
1 , . . . ) ∼ πexp

ϕ (a|s, z)
with z ∼ F (z|µi), for i = 1, . . . ,K. Then we embed these trajectories as α−

i = gω((τ
exp
i )−). We

want to force α and α−
i to be far apart in the trajectory embedding space because we hypothesize that

exploitation can more easily infer the task encoding z ∼ gω(z|τ exp) when the trajectory embeddings
for distinct tasks are clustered apart and the trajectory embeddings for similar tasks are clustered
together. In fact, this hypothesis is based on our observation of the t-SNE plots of trajectory
embeddings as we perform meta-training, as shown in the accompanying t-SNE figure.
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Figure 5: Trajectory embeddings after 2000 rollouts (top left); Final hidden state embeddings after
2000 rollouts (top right); Trajectory embeddings after 10000 rollouts (bottom left); Final hidden state
embeddings after 10000 rollouts (bottom right)

6.4 Contrastive Learning

We let

X :=
[
α+ α−

1 · · · α−
K

]⊤ ∈ R(K+1)×d (13)

where α+,α−
i ∈ Rd for i = 1, . . . ,K. Then, as in SimCLR [17], we form the similarity vector:

s =


sim(α,α+)
sim(α,α−

1 )
...

sim(α,α−
K))

 :=


(α⊤α+)/(||α||||α+||)
(α⊤α−

1 )/(||α||||α
−
1 ||)

...
(α⊤α−

K)/(||α||||α−
K ||)

 (14)

Then the loss for the positive pair α and α+ is computed as the negative log-likelihood:

Lsimclr = − log
exp(sim(α,α+)/T )∑K
i=1 exp(sim(α,α−

i )/T )
(15)

where we temper the softmax distribution with temperature T .
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6.5 Results & Analysis

Figure 6: Contrastive learning (blue) compared against DREAM baseline (orange) on basic map grid
environment.

We observe, as seen in Figure 4, that contrastive learning facilitates exploration. In fact, exploration
reward quickly attains optimal rewards in less than 2k exploration episodes, compared to the base-
line of over 30k exploration episodes. We interpret exploration reward as maximizing the mutual
information between the exploration trajectory embedding τ exp and the task encoding z; therefore,
we quickly learn to maximize the similarity between these two. However, it should be noted that
maximizing the mutual information does not necessarily imply that the task encoding z ∼ F (z|µ)
is a good or correct representation of the task. As such, we ran an experiment in which we delayed
using the contrastive loss on the trajectory embedder so that we can learn a good encoder F (z|µ)
before forcing mutuality of z and τ exp, i.e. I(τ exp; z). Nonetheless, as shown in Figure X, we found
that delaying contrastive training did not help exploitation rewards converge more quickly.

6.6 Generalized Algorithm

We enumerate a generalization of our contrastive loss algorithm as follows:

1. The exploration policy is rolled out on task µ to generate trajectory τµ.
2. τµ is passed to the trajectory embedder to get embedding α.
3. The exploration policy is then rolled out on task µ but with different starting positions

(and/or initial hidden states) to get embeddings αi for i ranging from 1 to k.
4. Compute the consistency component of the contrastive loss through

∑
i L(α,αi) where L

is a distance metric
5. Roll out the exploration policy n times on different tasks to get representations βi for i

ranging from 1 to n.
6. Compute the negative sampling part of the contrastive loss via −

∑
i L(α,βi) and return

the contrastive loss as the sum of the components.

7 Semi-Supervised Meta-Reinforcement Learning

Literature, such as [18] and [19], has applied meta-learning on tasks constructed from an unlabeled
dataset. Instead, we focus on the setting where a small number of tasks are known and we must
meta-learn the other tasks in a semi-supervised way.

7.1 Problem Setting

In particular, we consider the grid environment for which only a subset of tasks, i.e. the configuration
of bus destinations, {µi1 , . . . , µin} ⊂ {µ1, . . . µK} where 1 < im < K for m = 1, . . . , n is known.
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Thus, we denote the known problem IDs as µi1 , . . . , µin or, for simplicity, and the unobserved
problem IDs as ζ1, . . . , ζK−n. In the four bus environment, there are K = 4! tasks and we select a
subset of n = 8 to be supervised.

7.2 Contrastive Learning

Contrastive learning, as described in the previous section, is naturally amenable to semi-supervised
learning settings. That is, we begin by performing normal supervised DREAM on the supervised
tasks µi1 , . . . , µin for some number of time steps, preferably until the n supervised tasks are solved,
essentially pre-training the exploration and exploitation policies on the supervised tasks. In the case
of the four bus environment, this tasks roughly 32k episodes.

Once we have pre-trained the policies, we continue training on both the supervised and unsupervised
problem IDs. Recall, we train the exploitation policy conditioned on z = qω(τ

exp) if the meta-
training trial is odd-numbered and conditioned on z ∼ N (FΨ(µ), ρ

2I) if the meta-training trial is
even-numbered.

Therefore, during meta-training, on even trials, we need µ to pass into the encoder FΨ. Hence, we
only sample a task from the supervised tasks, i.e. one of the µi1 , . . . , µin . Then we proceed to
normally train the exploration policy, which should eventually find the map and, hence, µ. Thus, we
train the exploitation policy, encoder, and decoder as in regular DREAM.

However, on odd trials, since we use the trajectory decoder qω, we sample a task from all tasks, i.e.
both supervised and unsupervised tasks from which we get z = qω(τ

exp) and proceed to update the
exploration and exploitation policy as usual. We also train the trajectory embedder using contrastive
learning by pushing similar embeddings close together and dissimilar, i.e. trajectories for different
tasks, far apart.

7.3 Results & Analysis

Figure 7: Semi-supervised learning with contrastive loss (blue), after 32k steps of pre-training with
8 tasks, reaches optimal exploration rewards, i.e. maximizes mutual information between the task
encoding and the trajectory embedding, at a much faster rate than the baseline semi-supervised
learning without contrastive loss (red).

We pre-train for 32k steps on the 8 supervised tasks with regular DREAM. While it is not reflected in
the test exploitation reward graph since we average the rewards for all 24 tasks, we obtain optimal
exploitation rewards for the 8 known tasks. Thus, we solve the 8 tasks before we continue with
semi-supervised training. When we continue to train after 32k episodes, the exploitation reward falls
and the solutions for all tasks involve simply walking to the destination and avoiding all the buses.
However, we see a decreasing contrastive loss across all tasks, which suggests that the trajectory
embedder is effectively able to cluster trajectories by task. This indicates that the exploitation policy
recieves latent information that successfully identifies the appropriate task and is still unable to
effectively leverage that information. Ultimately, this is likely due to the fact that the exploitation
policy explicitly leverages latent information in the form of the encoded task-id and the trajectory
embedder for the supervised tasks
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7.4 Future Work: Semi-supervised k-means

Predicated on our hypothesis that trajectories for the same task cluster in the embedding space, we
posit that we can infer the problem ID from the clustered trajectories. In particular, trajectories rolled
out on the same supervised task sampled from µi1 , . . . , µin should all cluster around one of the
appropriate n centroids with assignment label corresponding to the problem ID.

7.5 Training Process

We begin the process by collecting M ∼ 103 supervised and unsupervised trajectories on problem
IDs µ1, . . . , µK .

For the first meta-training trial, we initialize the centroids and label assignments as follows. For the
supervised trajectories, we set the n centroids to be the mean of the trajectories that have labels given
by the supervised problem IDs. The centroids are given labels corresponding to the labels of the
clustered trajectories.

For the unsupervised trajectories, we randomly initialize K − n other centroids and assign the
unsupervised trajectories to the closest centroid.

Now, every N ∼ 103 meta-trials, we perform a k-means update to change cluster centroids and
assignments. However, note, the label assignments for supervised trajectories do not ever change.
We wait for N trials before updating to induce stability in the learned encoder for the problem IDs.
Furthermore, we never re-initialize the centroids or label assignments to ensure stability, i.e. that the
centroids and assignments do not differ too much, every time we update them every N trials.

We update the encoder FΨ(z|µ), the exploitation policy πtask
θ (a|s, z), and the decoder gω(τ exp) every

meta-training trial, after warm-up period. If we are on an odd-numbered meta-trial, we use the
trajectory decoder z = gω(τ

exp) to sample the latent task encoding. If we are on an even-numbered
trial, then we use the encoder z ∼ FΨ(z|µ); however, in cases where the trajectory is unsupervised,
i.e. for the unsupervised tasks ζ1, . . . , ζK−n, we infer the problem ID from the k-means centroids.

To infer the problem ID, we first roll out the trajectory and compute its embedding z = gω(τ
exp). We

find the centroid closest to it in squared Euclidean distance. Then the inferred label µ̂ is the label of
the closest centroid. Hence, we can now update the encoder, decoder, and exploitation policy as in
normal DREAM.

7.6 Using MAML to Meta-learn and Stabilize Task Encoder

We update the encoder FΨ(z|µ) every trial and update the k-means centroids and assignments
every N trials. Then any time the unsupervised problem IDs µ change, label asignment when we
update, the encoder is no longer valid for those problem IDs, which leads to instability. While
eschewing re-initialization of centroids and assignments every N trials creates stability, this is not
a strong guarantee. We propose an alternative method that leverages MAML [7] to meta-learn a
task encoder FΨ(z|µ) that is robust to changes in problem ID assignments for unsupervised tasks.
In particular, we learn meta-parameters Ψ for the task encoder FΨ across various permutations of
the unsupervised problem IDs τ train

i = perm({ζ1, . . . ,K−n }), where each permutation represents a
different meta-training "task". Then at meta-test time when we are using a particular permutation
of the unsupervised IDs to train the k-means model, we fine-tune the model with a few SGD steps
to rapidly adapt to the particular permutation τ test = {ζi1 , . . . , ζiK−n

} where 1 ≤ im ≤ K − n for
m = 1, . . . ,K − n.
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Algorithm 4 Semi-supervised DREAM meta-training trial t

1. Sample problem µ ∼ p(µ)
2. Semi-supervised k-means
# Only initialize centroids and label assignments at the beginning of meta-training for stability.
if meta-trial t = 0 then:

Asup = {}
Aunsup = {} ▷ Collect supervised and unsupervised trajectories
for M ∼ 500 iterations do:

Sample task ID µ ∼ {µi1 , . . . , µin , ζ1, . . . , ζK−n}
Rollout τ exp ∼ πexp

θ (a|s, τ exp
:t )

α = g(τ exp)
if α has supervised task ID then:

Asup ← Asup ∪ α
else

Aunsup ← Aunsup ∪ α
end if

end for
Set A← Asup ∪Aunsup

▷ Initialize label assignments for supervised trajectories
for αµ ∈ Asup with problem ID µ do:

Set c(α
µ) := µ ▷ We know the labels for supervised trajectories

end for
▷ Initialize centroids for supervised trajectories

for j = 1, . . . , n do:

msup
j =

∑
αµ∈Asup

1{c(α
µ) = j}αµ∑

αµ∈Asup
1{c(αµ) = j}

∈ Rd

end for
Randomly initialize unsupervised cluster centroids munsup

1 , . . . ,munsup
K−n ∈ Rd

end if
# k-means update, only every N ∼ 103 trials:
if t ≡ 0 mod N then:

while not converged do:
for α ∈ Aunsup do:

c(α) = argmin
j
||α−mj ||22

▷ Assign unsupervised trajectories to clusters (we already have the task ids for supervised)
end for
for j = 1, . . . ,K do:

mj =

∑
α∈A 1{c

(α) = j}α∑
α∈A 1{c(α) = j}

▷ Update all (supervised and unsupervised) cluster centroids
end for

end while
end if
3. Compute task embedding (supervised and unsupervised)
if t ≡ 0 mod 2 then

# If task unsupervised (not observable), estimate µ̂ from clusters
if µ ∈ {ζ1, . . . , ζK−n} then:

Decode α = gω(τ
exp)

# Infer problem ID from k-means
Set µ̂ = argminj ||α−mj ||22
Compute problem encoding z ∼ FΨ(z|µ̂)

else
# If task is supervised, directly encode
Compute problem encoding z ∼ FΨ(z|µ)

end if
else

Compute embedding z = gω(τ
exp)

end if
4. Exploration episode
Roll out exploration policy τ exp ∼ πexp

ϕ (at|st, τ
exp
:t )

Update πexp
ϕ and qω to maximize I(τ exp;z)

5. Exploitation episode
Every other episode, choose z ∼ qω(z|τ exp)
Roll out exploitation policy πtask

θ (a|s,z)
Update πtask

θ and FΨ
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8 Conclusion and Future Work

Our goal was to put DREAM under a number of limitations and develop ways to make it more
efficient and able to perform under them. The authors felt that DREAM was substantially better at a
variety of hard exploration tasks than originally thought and remark at how certain modifications -
while appearing relatively minor - could cause great training instability and a lack of convergence.
One of our main takeaways was that our PEARL-based method, when trained without a hidden
state, was around as sample efficient and achieved optimal rewards on the different environments
like vanilla DREAM. The nature of the algorithm’s context embedding is likely to only contain
information relative to task identity - something that might be much more usable than final cell state
for an exploration trajectory embedding - which leads to a future avenue of work. Our other main
takeaway was that the inclusion of our contrastive loss was relatively useful for tasks that did not
have a trained ID embedding. As decoupled meta-RL frameworks become more standard, we hope
that our research can provide insight into how a state-of-the-art algorithm like DREAM works and
what modifications can help improve performance.

9 Contributions

The nature of the project changed quite a bit relative to the original project proposal as we wanted to
focus on trying a number of modifications to DREAM rather than devote additional type to tuning
and debugging simulator issues for the Stanford Pupper virtual environment. Our contributions are
split as follows:

1. Sergio Charles: Worked on the theory and development of the PEARL-based task spe-
cific exploration algorithm, theory and development of contrastive loss / semi-supervised
experiments, and wrote sections 5, 6, and 7 of the paper.

2. Raghav Samavedam: Worked on the theory and initial development of the contrastive loss /
semi-supervised approach, experimentation of cell state based trajectory embeddings, and
wrote sections 1, 2, and 3 of the paper.

3. Arnav Joshi: Worked on development of contrastive loss and theory of k-means based
semi-supervised method, engineering didactic environments and t-SNE visualizations, and
wrote sections 4, 8, and 9 of the paper.
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