Model Based Autonomous RL

By: Sergio Charles

Supervised by: Archit Sharma & Chelsea Finn

Introduction

Introduction to Autonomous RL

B E=

Introduction to Autonomous RL

State, Reward

Introduction to Autonomous RL

State, Reward
X100

Introduction to Autonomous RL

State, Reward
X100

Manually reset

=0

Motivating Question

Question: Embodied agents, e.g. humans and robots, function in a continual,
non-episodic world. Why does the research community still develop RL
algorithms in episodic settings?

Motivating Question

Question: Embodied agents, e.g. humans and robots, function in a continual,
non-episodic world. Why does the research community still develop RL
algorithms in episodic settings?

e To build autonomous embodied agents, it is essential to learn continually
without human interventions.

Motivating Question

Question: Embodied agents, e.g. humans and robots, function in a continual,
non-episodic world. Why does the research community still develop RL
algorithms in episodic settings?

e To build autonomous embodied agents, it is essential to learn continually

without human interventions.
e Episodic learning requires humans to intervene after every episode,

impeding autonomy & scale of learning systems.

Introduction to Autonomous RL

State, Reward
X100

Autonomous reset

MEDAL

Key idea:
Matching Expert Distributions for

Autonomous Learning In addition to learning a forward policy 7y
to solve the task, learn a backward policy 73
to stay close to the states in the
demonstration distribution.

™

Backward
Forward Policy Policy

Forward policy objective

Expected discounted sum of rewards:

Z ’Ytr(sta at):|

t=0

max K
Tf

Backward policy objective

Minimize Jensen-Shannon divergence between optimal state distribution and
the state distribution induced by backward policy:

min Dys (6 (s)]|p* ()

Imitation Learning via Distribution Matching

e We do not require an explicit density under the generative distribution.
e Only require the ability to sample the distribution, allows construction of
imitation learning methods

Imitation Learning via Distribution Matching

e Tomatch p® and p*, use a small set of demonstration to learn a
state-space classifier C: S — [0,1].

e Generate states with the backward policy 7 by imitating demonstration
states, hence solving the min-max problem:

min mgx Esn o log C'(s)] + Eszb log(1 — C(s))]

Better Starting States

Kakade & Langford, 2002, Corollary 4.5

e Upper bound on the difference between the optimal performance and that
of policy 7T is proportional to:

p*(s)
po(s) ||

e The closer the starting state distribution is to the state distribution of the
optimal policy, the faster the policy moves toward the optimal policy 7*.

Motivating a Model Based Approach

Limitations of Model-Free Approaches

e Existing RL algorithms in the non-episodic setting focus on model-free
methods (FBRL, R3L, VaPRL, MEDAL).

Limitations of Model-Free Approaches

e Existing RL algorithms in the non-episodic setting focus on model-free
methods (FBRL, R3L, VaPRL, MEDAL).

e Model-free methods learn a Q-value function Q(s, a;8), e.g. soft-actor acritic, to
optimize forward 7¢(a|s; ¢)and backward 7 (a|s; ¢p) controllers.

Limitations of Model-Free Approaches

e Existing RL algorithms in the non-episodic setting focus on model-free
methods (FBRL, R3L, VaPRL, MEDAL).

e Model-free methods learn a Q-value function Q(s, a;8), e.g. soft-actor acritic, to
optimize forward 7¢(a|s; ¢)and backward 7 (a|s; ¢p) controllers.

e Data sharing across forward & backward policies is non-trivial:

Limitations of Model-Free Approaches

e Existing RL algorithms in the non-episodic setting focus on model-free
methods (FBRL, R3L, VaPRL, MEDAL).
e Model-free methods learn a Q-value function Q(s, a;8), e.g. soft-actor acritic, to
optimize forward 7¢(a|s; ¢)and backward 7 (a|s; ¢p) controllers.
e Data sharing across forward & backward policies is non-trivial:
o Methods like hindsight relabeling for goal-conditioned RL does not work
because the two policies are too different.

Limitations of Model-Free Approaches

e Existing RL algorithms in the non-episodic setting focus on model-free
methods (FBRL, R3L, VaPRL, MEDAL).
e Model-free methods learn a Q-value function Q(s, a;8), e.g. soft-actor acritic, to
optimize forward 7¢(a|s; ¢)and backward 7 (a|s; ¢p) controllers.
e Data sharing across forward & backward policies is non-trivial:
o Methods like hindsight relabeling for goal-conditioned RL does not work
because the two policies are too different.
o Highly sample inefficient.

Technical Challenge: Unified Model

e Learn a unified dynamics model p(s’, r|s, a;w) to efficiently construct a
forward policy 7;(a|s; ¢) and backward policy my(al|s; ¢s) around the
demonstration state distribution p™.

e Use data collected by 7¢ and 7 to train the same dynamics model for

sample efficiency.

Approach: MBPO + MEDAL

e Approach: Leverage online dynamics and policy learning by hallucinating
data with a global dynamics model p(s’, r|s, a;w), combing MBPO and
MEDAL.

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

NLL Update @
Env Model

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

NLL Update @
Env Model

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

NLL Update @
Env Model

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

NLL Update @
Env Model

Approach: MBPO + MEDAL

S
& 82 o0® k

S1

Hallucinate!

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

Approach: MBPO + MEDAL

S
% 55 es .k

S1
SAC update

& & o W
> 2 & &3 o b
v

Approach: MBPO + MEDAL

Algorithm 1 Model-based Autonomous Reinforcement Learning (MBARL)

require: forward demos Dy
optional: backward demos Dy

initialize:
Ry, my(als; dr), Q™ (s, a;05) >forward policy
Ry, mp(als; dp), Q™ (s, a:6p) >backward policy
p(s',r|s,a;w) ~ N(fE, £3) >Gaussian dynamics model
C(s;v) >state-space classifier
Ry« Ry UDys, Ry <+ RyU Dy >forward backward replay buffers
s~ po >sample initial state

while not done do
> Run forward policy for fixed number of steps until goal is reached, otherwise run backward policy
if forward then
ar~mp(-]s;r)
s' ~p(-ls,a),r < r(s,a)
Ry« Ry U{(s,a,s',1)}
update ¢, Q™F
update p,, with (s,a,s’) via maximum likelihood
else
a ~ mp(-[s;)
s" ~p(-ls,a),r + —log(1—C(s"))
Ry «+ Ry U{(s,a,s’,r)}
update mp, Q™
update p,, with (s,a,s") via maximum likelihood

> Train discriminator every K steps
if train-discriminator then
sample positive states S, ~ Dy
sample negative states S, ~ Dy
update C' on S, U S,
> Hallucination step using learned dynamics model
for M model rollouts do
for stage in (forward, backward) do
policy m = 7y if stage=forward else 7
replay buffer R = Ry if stage=forward else R,
sample s; uniformly from R
perform k-step model rollout starting from s; using policy 7
add sampled trajectory 7 to R
end for
end for

Objective Mismatch Problem

e Agent will seek states where dynamics model makes errors

e Discrepancy between policy objective and model objective is the “objective
mismatch problem”

e Not good for high-dimensional state space

MBRL Objective

e Train dynamics model, representations, and policy to be self-consistent.

e Policy should only visit states where the model is accurate, the
representation should encode information that is task-relevant and
predictable.

e Learn model-based RL algorithm that automatically learns compact yet
sufficient representations for model-based reasoning.

Aligned Latent Models (ALM)

encoder
poli t_,y
(Ly

s g t1—
] T

F(Sts @ty St41) ® YP(St41,Qr42, Se42) € V2 10g Q(Se42, ar42) = LK

MBRL algorithm that jointly optimizes the observation representations, a model that
predicts those representations, and a policy that acts based on those representations.

Preliminaries

e Markov Decision Process: M = (S, A, p,r, po)
e Learn policy that maximizes the discounted sum of expected rewards
within an infinite-horizon episode:

max Es¢y1~p(-lse,ae)sae~n(lse) [(1 =) Z'Ytr(sta at)
t=0

Components of ALM

e Encoder: eg(2: | st)
e Dynamics model of representations: mg(zt+1 | 2¢, at)
o POI'Cy 7r¢,(at I Zt)

e RL objective: Ep(r)|R(7)]
e Write distribution over trajectories as:

Ps(7) 2 po(so) [[p(se+1 | st,ae)mo(ar | ze)es (2t | se)
t=0

Evidence lower bound (from Jensen’s inequality):

log Ep(r)[R(7)] 2 Eqg(r) [log R(7) + log p(7) — log g()]

Only sample compact representations:

K

a5 (1) =po(s0)es (20 | s0)ms(ao | 20) [[p(se | st-1,ae-1)me(ze | ze-1,ae-1)ms(ar | 2¢)
=1

o
¢ H P(St | St—l,at—l)‘mqs(zt | zt—laat—l)ﬂ'd)(alt | Zt)-
t=K+1

ALM Objective

Evidence lower bound (ELBO):

K-1

L‘I; éEQi{(T) [(Z 7t7‘:(8t’ g, 3t+1)) + ’YK log Q(SK’ a'K) ?
t=0

where 7(s¢, at, 8¢+1) = Sl —9) logr(st,at)l+log es(2e+1 | 8t4+1) — logme (ze+1 | 2¢, at)J

(@ (®)

Autonomous RL using Aligned Latent
Models

Algorithm 1 Model-based Autonomous Reinforcement Learning using Aligned Latent models (MBARL)

require: forward demos Dy
optional: backward demos Dy

initialize:
ey(z|s) >encoder
mg(2'|z,a) >latent model
7r£ (als), 71'3) (als) >forward /backward policy
Co(7',a,2) >classifier to distinguish egandmyg
fo(s) >state-space discriminator
ré: (2,a),78(2,0) >forward/backward reward
g(z, a),Q4(z,q) >Q-functions
RS R® >forward /backward replay buffer
s~ po >sample initial state

while not done do
> Run forward policy for fixed number of steps until goal is reached, otherwise run backward policy
if forward then
Select action a = 7T£(-|€¢(S)) +N
s~ p(cls,a),r (s, a)
Rf + Ry U{(s,a,s',7)}
Sample length-K sequence {s, ai, i1 2K ~ Ry
Compute lower bound using off-policy actions

B il 8enlEE V=B wymye |:’YKQ£(ZK~,7Tf(ZK))
Mg (zi>t|2t:i-1,0i—1)

t+K—1
+ Y 71("5(%&1‘)KL(6¢>mg(Zi+1|5i+1)||7"¢(Zz'+1|3i-ai)]
=

Update encoder e4 and latent model my by gradient ascent on off-policy lower bound Lg M

Compute lower bound using on-policy actions

t+K—1

" Co(ziy1,ai, 2
Cfg({st}) o Eq¢(zt;x,at;x|st) |: Z ’71 (7'£(Zisai) + CIOg 9(s)
i=t

1= Ce(Zi+1~ Qi Zi)

) +7%Qf (2k, ﬂf(ZK))]

Update policy by gradient ascent on on-policy lower bound: Cff
@

Update latent classifier Cp, Q-function Q£ and 7'5 via gradient ascent on: ch,ﬁQ T
6 6

" viowv vu v (=) ~u

else
Select action a = 74 (-leg(s)) + N
s’ ~p(ls,a),r + —log(l — foleg(s")))
Ry < Ry U{(s,a,s' 1)}
Sample length-K sequence {s;, a;, Sit1};
Compute lower bound using off-policy acmons

t-l—K i | Rf

>Distribution matching p* and p°

‘Cg,m(ﬁ({siaaivsﬂ—l}g:t}{) =F es(zi=t|st) |:’7KQ3(2K77TIJ(ZK))

My (2i>t|2e:i—1,ai—1)

t+K—1

- Z H(rh(2i,a5) — KL(Egyurg (2i1|5i41)|Ime (2i41]24, a1)

Update encoder e4 and latent model mg by gradient ascent on off-policy lower bound V29

Compute lower bound using on-policy actions

t+K—1

i Co(zit1, @i, %)
LK (1. — F 1(,.17 i -1 e il
wz({st}) 96 (26:K,00: K | 8¢) l ; 7' (re(zi,ai) +clog 1 — Co(zit1, a4, 2i)

Update policy by gradient ascent on on-policy lower bound: Cfb
&

€g,My

) +7KQz<zK.,wb(zK>>]

Update latent classifier Cp, Q-function Qg and 'rg via gradient ascent on: CCG,LQ Follct
6 6

end if
> Train discriminator every K steps 2
if train-discriminator then
sample positive states S, ~ Dy
sample negative states Sy ~ Dy
update fp on S, U S,
s« s

Next Steps

Sketch of Coupled Algorithm

e Exploration: Explore and collect data from the environment s.t. we learn a
“good” model po(s’,7|s,a)
e Evaluation: agent learns a good policy 7 from dynamics model

Exploration Policy: Maximum Entropy

e Exploration policy Texp matches the demonstration state distribution:
Dxr(p™(s)[|p*(s))
e with high entropy for good coverage:
maximize H (p"**?(s))
subject to Dxr,(p™* (s)|[p*(s)) <€

Thanks to Archit & Chelseal!

