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Motivating Question

Question: Embodied agents, e.g. humans and robots, function in a continual, 
non-episodic world. Why does the research community still develop RL 
algorithms in episodic settings?

● To build autonomous embodied agents, it is essential to learn continually 
without human interventions.

● Episodic learning requires humans to intervene after every episode, 
impeding autonomy & scale of learning systems.
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MEDAL

Key idea: 

In addition to learning a forward policy       
to solve the task, learn a backward policy      
to stay close to the states in the 
demonstration distribution.



Forward policy objective

Expected discounted sum of rewards:



Backward policy objective

Minimize Jensen-Shannon divergence between optimal state distribution and 
the state distribution induced by backward policy:



Imitation Learning via Distribution Matching

● We do not require an explicit density under the generative distribution.
● Only require the ability to sample the distribution, allows construction of 

imitation learning methods



Imitation Learning via Distribution Matching

● To match       and      , use a small set of demonstration to learn a 
state-space classifier                      .

● Generate states with the backward policy      by imitating demonstration 
states,  hence solving the min-max problem:



Better Starting States

Kakade & Langford, 2002, Corollary 4.5

● Upper bound on the difference between the optimal performance and that 
of policy     is proportional to: 

● The closer the starting state distribution is to the state distribution of the 
optimal policy, the faster the policy moves toward the optimal policy      .



Motivating a Model Based Approach
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Limitations of Model-Free Approaches

● Existing RL algorithms in the non-episodic setting focus on model-free 
methods (FBRL, R3L, VaPRL, MEDAL).

● Model-free methods learn a Q-value function                , e.g. soft-actor acritic, to 
optimize forward                    and backward                     controllers.

● Data sharing across forward & backward policies is non-trivial:
○ Methods like hindsight relabeling for goal-conditioned RL does not work 

because the two policies are too different.
○ Highly sample inefficient.



Technical Challenge: Unified Model

● Learn a unified dynamics model                             to efficiently construct a 
forward policy                      and backward policy                     around the 
demonstration state distribution     .

● Use data collected by      and       to train the same dynamics model for 
sample efficiency.



Approach: MBPO + MEDAL

● Approach: Leverage online dynamics and policy learning by hallucinating 
data with a global dynamics model                         , combing MBPO and 
MEDAL.
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Approach: MBPO + MEDAL

Env Model





Objective Mismatch Problem

● Agent will seek states where dynamics model makes errors
● Discrepancy between policy objective and model objective is the “objective 

mismatch problem”
● Not good for high-dimensional state space



MBRL Objective

● Train dynamics model, representations, and policy to be self-consistent.
● Policy should only visit states where the model is accurate, the 

representation should encode information that is task-relevant and 
predictable.

● Learn model-based RL algorithm that automatically learns compact yet 
sufficient representations for model-based reasoning.



Aligned Latent Models (ALM)

MBRL algorithm that jointly optimizes the observation representations, a model that 
predicts those representations, and a policy that acts based on those representations.



Preliminaries

● Markov Decision Process: 
● Learn policy that maximizes the discounted sum of expected rewards 

within an infinite-horizon episode:



Components of ALM

● Encoder:
● Dynamics model of representations:
● Policy:



● RL objective: 
● Write distribution over trajectories as:



Evidence lower bound (from Jensen’s inequality):



Only sample compact representations:



ALM Objective

Evidence lower bound (ELBO):



Autonomous RL using Aligned Latent 
Models







Next Steps



Sketch of Coupled Algorithm

● Exploration: Explore and collect data from the environment s.t. we learn a 
“good” model

● Evaluation: agent learns a good policy     from dynamics model



Exploration Policy: Maximum Entropy

● Exploration policy           matches the demonstration state distribution:

● with high entropy for good coverage: 



Thanks to Archit & Chelsea!


