Model-Based Autonomous Reinforcement Learning

Sergio Charles with Archit Sharma, Leo Dong & Chelsea Finn
Department of Computer Science, Stanford University

Background & Related Work

Question: Embodied agents, e.g. humans and robots, function in a continual,
non-episodic world. Why does the research community still develop RL
algorithms in episodic settings?

e To build autonomous embodied agents, it is essential to learn continually
without human interventions.

e Episodic learning requires humans to intervene after every episode,
impeding autonomy & scale of learning systems.

Rewar X100

Autonomous
reset

~

Autonomous Resets: MEDAL

In addition to learning a forward policy 7¢ to solve the task, learn a backward policy 7 to stay
close to the states in the demonstration distribution.

Forward policy objective Backward policy objective
o0 D b " Matching Expert Distributions for
max E E Vt"“(St, a) nglén 3s(p”(s)[lp*(s)) Autonomous Learning
T f
t=0

e To match pb and ,0*, use a small set of demonstration to learn
a state-space classifier ¢ : s — [0,1].
e Generate states with the backward policy 7 by imitating S
Tp

demonstration states, hence solving the min-max problem: T
f Backward

H}Tibn = = Esp [10g C(8)] 4+ Es o [log(1 — C(s))] Forward Policy Policy

Motivating a Model-Based Approach

e Existing RL algorithms in the non-episodic setting focus on model-free methods
(FBRL, R3L, VaPRL, MEDAL).
e Model-free methods learn a Q-value function Q(s,a;8) , e.g., via soft-actor critic,
to optimize the forward and backward controllers: 7¢(a|s; ¢5) and ms(als; ¢s).
e Data sharing across forward & backward policies is non-trivial:
o Methods like hindsight relabeling for goal-conditioned RL does not work
because the two policies are too different.
o Highly sample inefficient.

Objective

e Learn a unified dynamics model p(s’, r|s, a; w) to efficiently construct a
forward policy 7¢(a|s; ¢¢) and backward policy 7y (als; ¢p) around the
demonstration state distribution p™

e Use data collected by 74 and 7}, to train the same dynamics model for
sample efficiency.

MBARL Algorithm

Approach: Leverage online dynamics and policy learning by hallucinating data with a
global dynamics model p(s’, r|s, a;w), combing MBPO and MEDAL.

S
e 82 o0® k

S1
S0 /
Hallucinate! @ @

0

| | | R: R
222 222 229 ;oo

7Tfﬁ(S;cb) m(s;0) p(s'srls,a;w)

Algorithm 1 Model-based Autonomous Reinforcement Learning (MBARL)

require: forward demos Dy
optional: backward demos D

initialize:
Ry, ws(als:¢f), Q"1 (s,a;605f) eforward policy
Ry, me(als; dp), Q™ (s, a; 65) ebackward policy
p(s',r|s,a;w) ~ N(fE, £2) »>Gaussian dynamics model
C(s; v,-',v] pstate-space classifier
Ry Ry UDs, Ry + RyU D, pforward backward replay buffers
8~ o psample initial state

while not done do
& Run forward policy for fixed number of steps until goal is reached, otherwise run backward policy
if forward then
a ~ ms(|s; o5)
s ~ p(-|s,a),r + r(s,a)
Ry« R;U{(s,a,s' 1)}
update 7y, Q™/
update p,, with (s,a,s’) via maximum likelihood
else
a ~ mo(-|8; Ps)
s' ~ p(:|s,a),r + r(s,a)
Ry « Ry U {(s,a,s", 1)}
update my, Q™
update p,, with (s,a,s') via maximum likelihood

& Train discriminator every K steps
if train-discriminator then
sample positive states S, ~ Dy
sample negative states S, ~ D
update C' on S, U S,
> Hallucination step using learned dynamics model
for M model rollouts do
for stage in (forward, backward) do
policy m = m if stage=forward else m,
replay buffer R = R; if stage=forward else R,
sample s; uniformly from R
perform k-step model rollout starting from s; using policy =
add sampled trajectory 7 to R
end for
end for

Experiments: Offline Model-Based Approach

p* S1 5200 @
S0 / %

R
Te(S) p(s’,r|s,a;w)

Goal: Given a set of oracle demonstrations, learn a dynamics model p(s’,r|s, a;w)such that we learn a

good policy.
Approach: Offline learning by hallucinating data with dynamics model.

(*) Collect uniformly sampled data in pointmass to train dynamics model
Model sizes: {1k, 20k, 50k} training set
Rollout lengths: {20, 35, 50}

Initial state:
o Narrow initial state distribution
o Demonstration distribution

Results & Analysis

Effect of Rollout Lenqgth versus Initial State

Model 1 (50k)

« rollout_from_demo_True_rollout_50
w= rollout_from demo_False_rollout 50
_| == rollout_from_demo_True_rollout_35
=== rollout_from_demo_False_rollout 35
rollout_from_demo_True_rollout 20
rollout_from_demo_False_rollout_20

=
o

From demo distribution, rollout 35

* From narrow distribution, rollout 50

e
W

p
=
L

S
[\

=
—_

/\

/

Deployed Policy Evaluation

N

0.0e0 5.0ed4 1.0e5 1.5e5 2.0e5 2.5e5 3.0e5

e While longer rollout lengths certainly improve evaluation performance, we
find that the way we choose to sample initial states for model
hallucination is crucial.

e Sampling initial states from demonstrations significantly boosts
performance.

Effect of Starting States Across Models

%
¥ 5 on e moirae | 7 ed_modell_roll omo_True_rollout_50

S
w

0.8 1

=3
S
1

0.6 1

=
w
1

=
o

=
a

Deployed Policy Evaluation

Deployed Policy Evaluation

l" /—’—'—N-f\

O.deO l.OIeS 2.6e5 3.0le5 4.de5 5.0Ie5 6.6e5 0.0e0 1.0e5 2.0e5 3.0e5 4.0e5 5.0e5 6.0e5

e When sampling from a narrow initial state distribution, the order of performance is as
expected, i.e. model 1 performs the best and longer rollout lengths always outperform
their shorter counterparts.

e Unexpected: when hallucinating from demonstration states, there is little to no
difference in model performance regardless of training dataset size.

Decoupling Exploration & Exploitation

e Exploration policy mexp matches the demonstration state distribution:

Dkr.(p™* (s)|[p"(s))

e with high entropy for good coverage:
maximize H (p™xr(s))

subject to Dkr,(p™*(s)||p*(s)) < e
References

[1] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization, 2019.

[2] Archit Sharma, Rehaan Ahmad, and Chelsea Finn. A state-distribution matching
approach to non-episodic reinforcement learning, 2022.

