

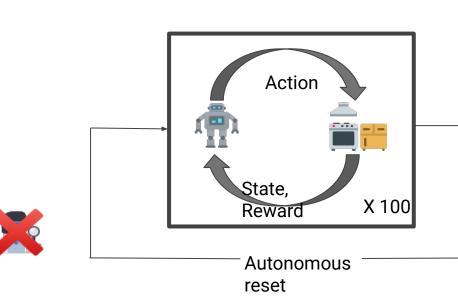
Model-Based Autonomous Reinforcement Learning

Sergio Charles with Archit Sharma, Leo Dong & Chelsea Finn Department of Computer Science, Stanford University

Background & Related Work

Question: Embodied agents, e.g. humans and robots, function in a continual, non-episodic world. Why does the research community still develop RL algorithms in episodic settings?

- To build autonomous embodied agents, it is essential to learn continually without human interventions.
- Episodic learning requires humans to intervene after every episode, impeding autonomy & scale of learning systems.



Autonomous Resets: MEDAL

In addition to learning a forward policy π_f to solve the task, learn a backward policy π_b to stay close to the states in the demonstration distribution.

Forward policy objective

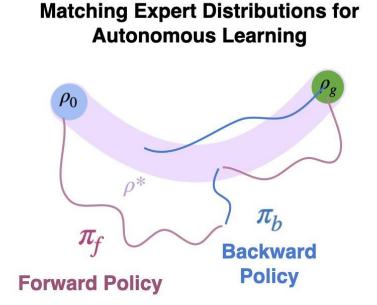
 $\max_{\pi_f} \mathbb{E} \left| \sum \gamma^t r(s_t, a_t) \right|$

Backward policy objective

$$\min_{\pi_b} \mathcal{D}_{\rm JS}(\rho^b(s)||\rho^*(s))$$

- To match ρ^b and ρ^* , use a small set of demonstration to learn a state-space classifier $C: S \rightarrow [0, 1]$.
- Generate states with the backward policy π_b by imitating demonstration states, hence solving the min-max problem:

 $\min_{\pi_b} \max_{C} \mathbb{E}_{s \sim \rho^*} [\log C(s)] + \mathbb{E}_{s \sim \rho^b} [\log(1 - C(s))]$



Motivating a Model-Based Approach

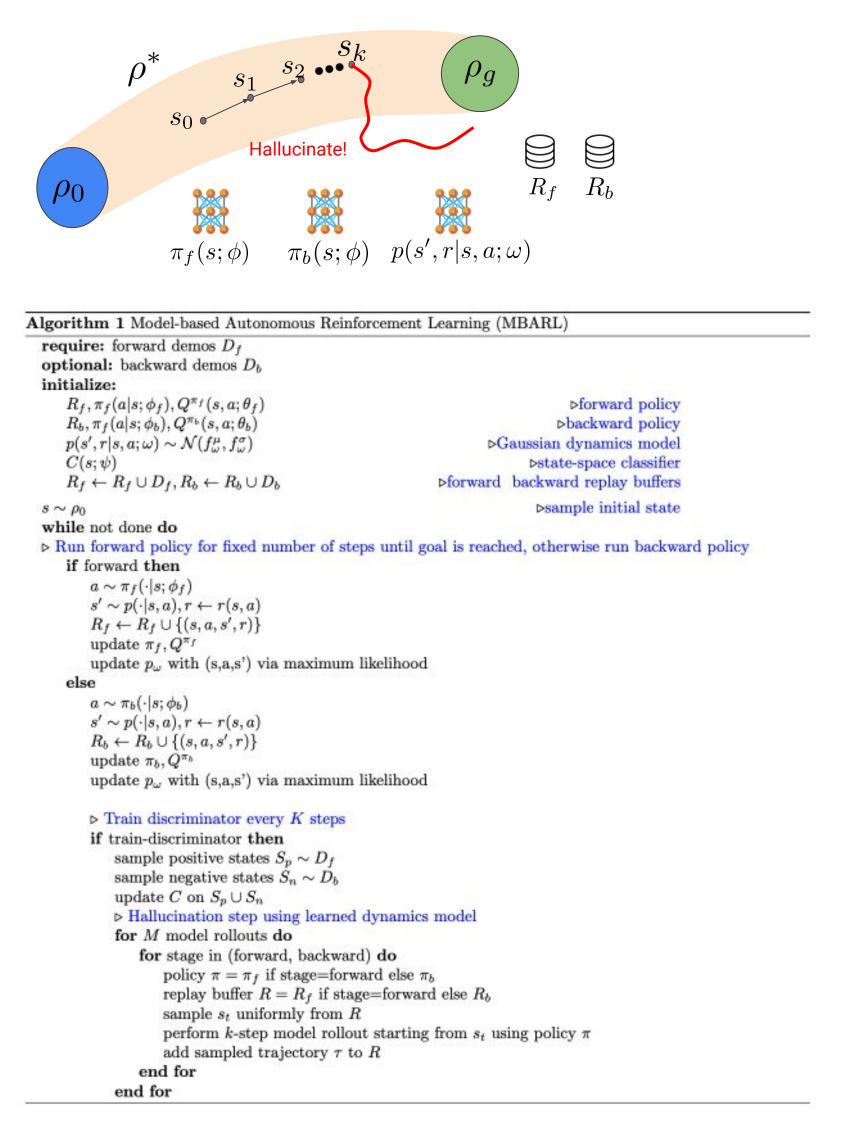
- Existing RL algorithms in the non-episodic setting focus on model-free methods (FBRL, R3L, VaPRL, MEDAL).
- Model-free methods learn a Q-value function $Q(s, a; \theta)$, e.g., via soft-actor critic, to optimize the forward and backward controllers: $\pi_f(a|s;\phi_f)$ and $\pi_b(a|s;\phi_b)$.
- Data sharing across forward & backward policies is non-trivial:
 - Methods like hindsight relabeling for goal-conditioned RL does not work because the two policies are too different.
 - Highly sample inefficient.

Objective

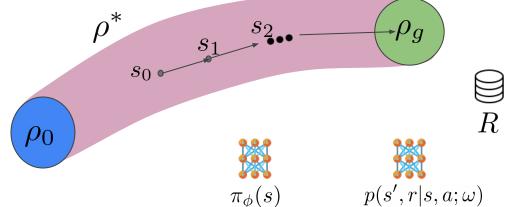
- Learn a **unified dynamics model** $p(s', r | s, a; \omega)$ to efficiently construct a forward policy $\pi_f(a|s;\phi_f)$ and backward policy $\pi_b(a|s;\phi_b)$ around the demonstration state distribution ρ^* .
- Use data collected by π_f and π_b to train the same dynamics model for sample efficiency.

MBARL Algorithm

Approach: Leverage online dynamics and policy learning by hallucinating data with a global dynamics model $p(s', r | s, a; \omega)$, combing MBPO and MEDAL.



Experiments: Offline Model-Based Approach



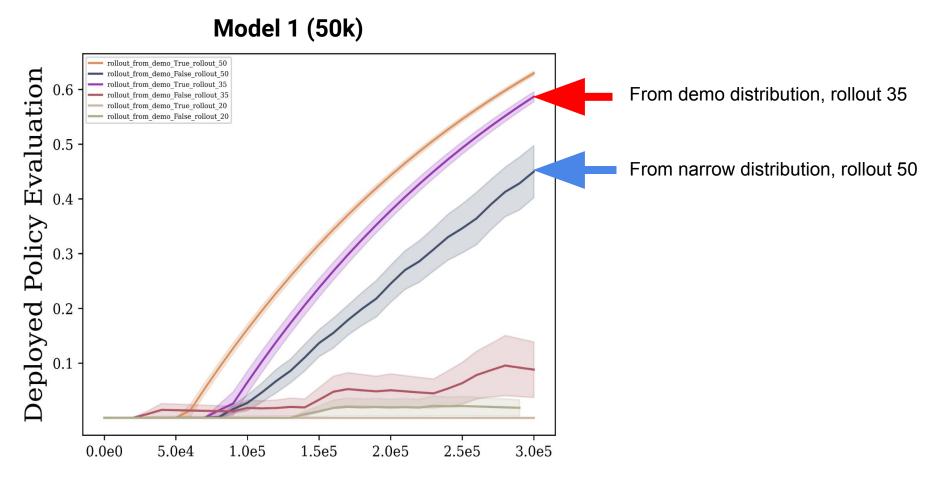
Goal: Given a set of oracle demonstrations, learn a dynamics model $p(s', r|s, a; \omega)$ such that we learn a good policy.

Approach: Offline learning by hallucinating data with dynamics model.

- (*) Collect uniformly sampled data in pointmass to train dynamics model
- **Model sizes**: {1k, 20k, 50k} training set
- **Rollout lengths:** {20, 35, 50}
- Initial state:
 - Narrow initial state distribution
 - Demonstration distribution

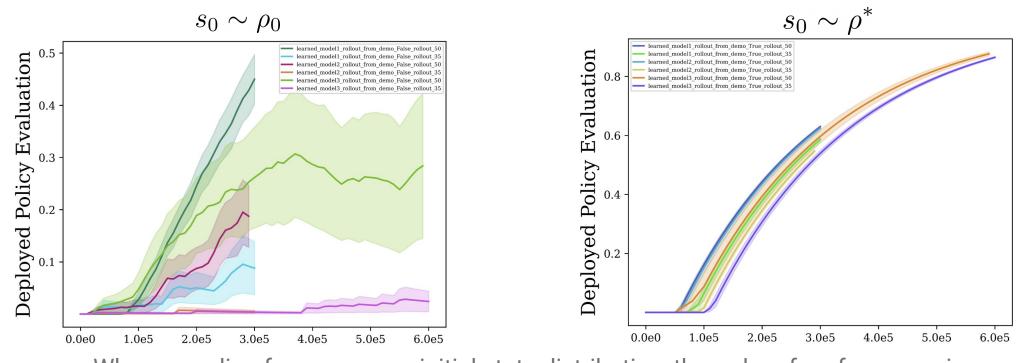
Results & Analysis

Effect of Rollout Length versus Initial State



- While longer rollout lengths certainly improve evaluation performance, we find that the way we choose to sample initial states for model hallucination is crucial.
- Sampling initial states from demonstrations significantly boosts performance.

Effect of Starting States Across Models



- When sampling from a narrow initial state distribution, the order of performance is as expected, i.e. model 1 performs the best and longer rollout lengths always outperform their shorter counterparts.
- Unexpected: when hallucinating from demonstration states, there is little to no difference in model performance regardless of training dataset size.

Decoupling Exploration & Exploitation

• Exploration policy π_{exp} matches the demonstration state distribution:

$D_{\mathrm{KL}}(\rho^{\pi_{\mathrm{exp}}}(s)||\rho^*(s))$

• with high entropy for good coverage:

maximize $H(\rho^{\pi_{\exp}}(s))$

subject to $D_{\mathrm{KL}}(\rho^{\pi_{\mathrm{exp}}}(s)||\rho^*(s)) < \varepsilon$

References

[1] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based policy optimization, 2019.

[2] Archit Sharma, Rehaan Ahmad, and Chelsea Finn. A state-distribution matching approach to non-episodic reinforcement learning, 2022.