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1 Introduction
The Arzèla-Ascoli theorem is a powerful result that provides sufficient conditions
for the compactness of subsets of the space of continuous functions. It has a range
of applications, from proving Peano’s theorem in ordinary differential equations,
to proving the Riemann mapping theorem in complex analysis. There are many
methods to verify compactness, like checking for the general conditions of completenes
and total boundedness. The Arzèla-Ascoli theorem allows one to verify more
straightforward conditions, i.e. uniform boundedness and equicontinuity. In essence,
it is a generalization of the Heine-Borel theorem in Euclidean space, which also
provides "weaker" sufficient conditions for compactness of subsets. We begin with
fundamental definitions and results from Foundations of Mathematical Analysis [1].

Metric spaces are useful mathematical objects that prescribe to sets the notion
of distance. We define a metric and metric space as follows:

Definition 1. Let M be a set. A metric on M is a function d :M ×M → [0,∞)
which satisfies

(i) d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x) for all x, y ∈M

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈M .

Definition 2. A metric space is an ordered pair (M,d), where M is a set and d
is a metric for M .

Example 1. The example that we will discuss in detail in this exposition is the
space of continuous real valued functions on a compact interval. Let I = [0, 1] and
define C(I) = {f : f is a continuous real-valued function on I}. Then (C(I), d) is a
metric space, when endowed with the supremum metric d, given by

d(f, g) = ||f − g|| = sup{|f(x)− g(x)| : x ∈ I}. (1)

To define compactness of a metric space, we first introduce open sets and open
covers.

Definition 3. Let (M,d) be a metric space. Let ϵ > 0 and let x ∈M . We let

Bϵ(x) = {y ∈M : d(x, y) < ϵ}. (2)

Bϵ(x) is called the open ball of radius ϵ centered at x.

Definition 4. Let M be a metric space and let X be a subset of M . We say that X
is open if for every x ∈ X, there exists an open ball Bϵ(x), centered at x, such that
Bϵ(x) ⊂ X.
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Definition 5. An open cover of a metric space M is a collection U of open subsets
of M such that M =

⋃
U . A subcover of U is a subcollection U∗ of U such that

M =
⋃
U∗.

Definition 6. Let M be a metric space, and let X be a subset of M . We say that a
point x ∈ M is a limit point of X if there is a sequence {xn} such that xn ∈ X
for every positive integer n and limn→∞ xn = x.

Definition 7. Let M be a metric sapce, and let X be a subset of M . We let X̄
denote the set of limit points of X, called the closure of X.

Definition 8. A metric space M is compact if every open cover of M has a finite
subcover. That is, let I be an index set and let (Uα)α∈I be a collection of open
subsets of M such that M =

⋃
α∈I Uα. Then M is compact if there exists a finite

subset J ⊂ I whereby
M =

⋃
α∈J

Uα. (3)

Definition 9. Let (M,d) be a metric space. A subset X ⊂ M is compact if and
only if every open cover of X has a finite subcover.

The Bolzano-Weierstrass characterization of sequential compactness is also partic-
ularly useful and will be used when we provide counterexamples to the Arzèla-Ascoli
theorem.

Definition 10. A metric space M is called sequentially compact if every sequence
in M has a convergent subsequence.

Theorem 1. Let M be a metric space. Then M is compact if and only if M is
sequentially compact.

Proof. This is the Bolzano-Weirstrass characterization of a compact metric space.
The proof of this theorem can be found on Page 150, Section 43 of [1].

There are many sufficient and necessary conditions for compactness. In this
exposition, we will emphasize the ideas of completeness and total boundedness. We,
thus, define the notion of completeness.

Definition 11. Let M be a metric space. If every Cauchy sequence in M is
convergent, we say that M is a complete metric space.

Theorem 2. The metric space Rn is complete.

Proof. This theorem is proved on Page 150, Section 46 of [1].

Theorem 3. The space of continuous real-valued functions on I, C(I), is a complete
metric space.

Proof. Fix x0 ∈ I. Let {ϕn} ∈ C(I) be a Cauchy sequence. Thus, there exists N > 0
such that for all n,m > N ,

||ϕn − ϕm|| = sup
x∈I

|ϕn(x)− ϕm(x)| < ϵ. (4)

When x = x0, there exists N > 0 such that

||ϕn(x0)− ϕm(x0)|| = sup
x∈I

|ϕn(x)− ϕm(x)| < ϵ (5)

for all n,m > N . Here, {ϕn(x0)} ⊂ R is a Cauchy sequence. Since R is a complete
metric space by the aforementioned theorem, it follows that {ϕn(x0)} is convergent.
Since x0 is arbitrary, this holds for all Cauchy sequences {ϕn} ∈ C(I). Thus, C(I) is
complete.
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Theorem 4. A closet subset X of a complete metric space (M,d) is itself complete.

Proof. Let {xn} be a Cauchy sequence in X. Then, {xn} is Cauchy in (M,d).
Hence, since M is complete, {xn} → x ∈M is convergent. Now, recall X is closed
and hence contains all of its limit points; thus, x ∈ X. It follows that (X, d) is
complete.

The notion of total boundedness is an intuitive one: we can cover a metric space
by finitely-many open balls.

Definition 12. We say that a metric space M is totally bounded if for every
ϵ > 0, there exists x1, . . . , xn ∈M such that M = Bϵ(x1) ∪ · · · ∪Bϵ(xn).

Theorem 5. A metric space (M,d) is compact if and only if it is both complete and
totally bounded.

Proof. See Theorem 5.9 on Page 40 of [2].

2 Outline
The Arzèla-Ascoli theorem provides conditions for the compactness of subsets
Φ ⊂ C(I) of the space of continuous functions

C(I) = {f : f is a continuous real-valued function on I}.

That is, if Φ is uniformly bounded and equicontinuous, then its closure is compact.
It is more efficient to verify the uniformly boundedness and equicontinuity compared
to the general conditions of completeness and total boundedness. Thus, the Arzèla-
Ascoli theorem is analogous to the Heine-Borel theorem for Euclidean space Rk, in
the sense that it reduces compactness to simpler conditions in a restricted context.
In particular, the Heine-Borel theorem reduces compactness as follows:

Theorem 6 (Heine-Borel [1]). Let S be a subset of Rk, then S is compact if and
only if S is closed and bounded.

The strategy for proving the Arzèla-Ascoli theorem is as follows:

• To show that Φ ⊂ C(I) is complete, we must show that it is complete and
totally bounded.

• Since Φ ⊂ C(I) is complete, it suffices to show total boundedness.

• We show that Φ ⊂ C(I) can be approximated well by a finite set of piecewise
linear functions ψi ∈ C(I), for i = 1, . . . , N .

• Thus, we conclude that for all ϵ > 0, there exists ψi ∈ C(I) such that Φ ⊂
Bϵ(ψ1) ∪ · · · ∪Bϵ(ψN ).

3 Theorem Statement & Proof
Theorem 7 (Arzèla-Ascoli). Let Φ be a subset of the space, C(I), of continuous
real-valued functions on I = [0, 1], equipped with the sup metric. Suppose that:

(a) There is some B > 0 such that ||ϕ(x)|| ≤ B for all x ∈ I and all ϕ ∈ Φ. That
is, Φ is uniformly bounded.

(b) For every ϵ > 0 there is a δ > 0 such that ||ϕ(x) − ϕ(y)|| < ϵ for all ϕ ∈ Φ
whenever |x− y| < δ, and x, y ∈ I. That is, Φ is equicontinuous.
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Then the closure Φ̄ is compact.

Proof. We must show that Φ̄ is compact. Recall C(I) is complete by Theorem 3.
Invoking Theorem 4, since Φ̄ is closed and a subset of a complete metric space, it is
also complete. Thus, by Theorem 5, given that Φ̄ is complete, it suffices to show
that it is totally bounded.

Indeed, Φ being totally bounded is a necessary condition for Φ̄ to be totally
bounded. Suppose Φ is totally bounded, then for every ϵ > 0 there exists ϕ1, . . . , ϕn ∈
Φ ⊂ Φ̄ such that

Φ ⊂
n⋃

i=1

Bϵ/2(ϕi). (6)

Hence,

Φ̄ ⊂
n⋃

i=1

Bϵ/2(ϕi) =

n⋃
i=1

Bϵ/2(ϕi) ⊂
n⋃

i=1

Bϵ(ϕi), (7)

which means Φ̄ is totally bounded.
Hence, it suffices to show that Φ is totally bounded. Suppose ϵ > 0 is given. We

must cover Φ by finitely many balls of radius ϵ. Let B as in hypothesis (a) of the
theorem and let δ > 0 correspond to the given ϵ, as in hypothesis (b).

Divide I into subintervals, each of length less than δ, using finitely many points
of subdivision: 0 = x0 < x1 < · · · < xn = 1. Also divide [−B,B] into subintervals of
length less than ϵ using finitely many points of subdivision: −B = y0 < y1 < · · · <
yp = B. Then the rectangle I × [−B,B] is divided into np smaller rectangles, each
with width less than δ and height less than ϵ. This is shown in Figure 1.

Figure 1: Interpolation of continuous function ϕ ∈ Φ with piecewise linear function
ψ ∈ C(I) on interval I.

It is possible to associate to each ϕ ∈ Φ a continuous, piecewise linear function,
y = ψ(x) whose graph has vertices all of which are of the form (xk, yl) for some
k ∈ {1, . . . , n}, l ∈ {1, . . . , p} and such that

||ψ(xk)− ϕ(xk)|| < ϵ (8)

for all k ∈ {1, . . . , n}. Such a ψ is shown in Figure 1, whereby we define ψ(xk) as
the closest vertex to ϕ(xk); this is clearly less than ϵ by construction of the grid
above.
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Consider x ∈ I. By construction of the grid, it must lie in an interval xk ≤ x ≤
xk+1, as shown in Figure 1. Hence consider:

||ϕ(x)− ψ(x)|| = ||(ϕ(x)− ϕ(xk)) + (ϕ(xk)− ψ(xk)) + (ψ(xk)− ψ(x))||
≤ ||ϕ(x)− ϕ(xk)||+ ||ϕ(xk)− ψ(xk)||+ ||ψ(xk)− ψ(x)||.

(9)

Since |x− xk| < δ, by equicontinuity of ϕ ∈ Φ, it follows that ||ϕ(x)− ϕ(xk)|| < ϵ.
Similarly, by construction of ψ, we have that ||ϕ(xk)− ψ(xk)|| < ϵ. Hence,

||ϕ(x)− ψ(x)|| < 2ϵ+ ||ψ(xk)− ψ(x)|| (10)

Finally, we bound the third term as follows:

||ψ(xk)− ψ(x)|| = ||(ψ(xk)− ϕ(xk)) + (ϕ(xk)− ϕ(xk+1)) + (ϕ(xk+1)− ψ(xk+1))||
≤ ||ψ(xk)− ϕ(xk)||+ ||ϕ(xk)− ϕ(xk+1)||+ ||ϕ(xk+1)− ψ(xk+1)||.

(11)

Here, ||ψ(xk) − ϕ(xk)|| < ϵ and ||ϕ(xk+1) − ψ(xk+1)|| < ϵ by construction of ψ.
Likewise, |xk − xk+1| < δ and since ϕ ∈ Φ is equicontinuous by hypothesis (b), it
follows that ||ϕ(xk)− ϕ(xk+1)|| < ϵ. Hence, the inequality in Equation (11) reduces
to

||ψ(xk)− ψ(x)|| < 3ϵ. (12)

Thus, Equation (10) becomes:

||ϕ(x)− ψ(x)|| < 2ϵ+ ||ψ(xk)− ψ(x)||
< 5ϵ

(13)

It follows that Φ can be covered by balls of radius 5ϵ whose centers are such
functions ψ. We must show that there exist only finitely many such functions ψ.
Recall, to any ϕ ∈ Φ inside a rectangle, we associated a piecewise linear function
that passes through vertices (xk, yk) for k = 1, . . . , n. However, there are only
finitely such functions; namely, for each xk, there are p gridpoint choices for yk for
k = 1, . . . , n. Hence, in total, there are only pn such piecewise linear functions over
interval I.

Indeed, this implies Φ can be covered by finitely many balls of radius 5ϵ with
centers ψi(x) for i = 1, . . . , N = pn. Thus,

Φ ⊂ B5ϵ(ψ1(x)) ∪ · · · ∪B5ϵ(ψN (x)), (14)

which means that Φ is totally bounded, and the result follows at once.

4 Counterexamples
We now enumerate two counterexamples where either hypotheses (a) or (b) of the
theorem fail.

4.1 Example A
Let I = [0, 1]. Consider a subset Φ ⊂ C(I) where hypothesis (a) fails, i.e. Φ is not
uniformly bounded. Let

Φ = {ϕn(x) = n : n = 1, . . . , x ∈ I} ⊂ C(I, dsup). (15)

We have that
||ϕn(x)|| = sup

x∈I
|ϕn(x)| = n (16)
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for all n. Thus, |ϕn(x)| → ∞ as n→ ∞ so Φ is not uniformly bounded.
We now check for compactness. Recall that Φ̄ is compact if Φ is compact.

Moreover, by Theorem 1, Φ is compact if and only if it is sequentially compact. We
say Φ is sequentially compact if every sequence has convergent subsequence in Φ.
We will show not such convergent subsequence exists.

Proof. Let {nk}k≥1 be a subsequence. Suppose, for the sake of contradiction, that
{ϕnk

} is a convergent subsequence, i.e. {ϕnk
(x)} → {ϕ(x)} for all x ∈ I. Then, for

all ϵ > 0, there exists K > 0 such that if k ≥ K, then

||ϕnk
(x)− ϕ(x)|| < ϵ (17)

for all x ∈ I. Noting that Φ is not uniformly bounded:

ε > ||ϕnk
(x)− ϕ(x)||

= sup
x∈I

|nk − ϕ(x)|

≥
∣∣∣∣nk − sup

x∈I
ϕ(x)

∣∣∣∣
≥ nk.

(18)

Taking the limit as k → infty, we get a contradiction, as {nk} is a subsequence so
it is strictly increasing and positive. Hence, there does not exists a K such that if
k ≥ K then ε > nk. We have a contradiction, so Φ must not be sequentially compact.
Hence, Φ̄ is not sequentially compact and, by Theorem 1, not compact.

4.2 Example B
Let I = [0, 1]. Consider a subset Φ ⊂ C(I) where hypothesis (b) fails, i.e. Φ is not
equicontinuous. Let

Φ = {ϕn(x) = xn : n = 1, . . . , x ∈ I} ⊂ C(I, dsup). (19)

We check that this is, indeed, not equicontinuous. Consider 0 < δ < 1. Moreover,
suppose x = 1, y = 1− δ/2 then |x− y| < δ/2 < 1/2. Hence,

|xn − yn| = 1−
(
1− δ

2

)n

. (20)

Choose n such that (1− δ/2)n < 1/2. Then |xn − yn| > 1− 1/2 = 1/2, which means
Φ is not equicontinuous.

We now prove that Φ is not sequentially compact and, hence, not compact.

Proof. Let {nk}k≥1 be a subsequence. As before, we proceed by contradiction. For
suppose that {ϕnk

} is a convergent subsequence, i.e. {ϕnk
(x)} → {ϕ(x)} for all

x ∈ I. Then, for all ϵ > 0, there exists K > 0 such that if k ≥ K, then

||ϕnk
(x)− ϕ(x)|| < ϵ (21)

for all x ∈ I. Hence, we choose another point y ∈ I such that |x − y| < δ in the
sense of equicontinuity of Φ. Now, consider:

||ϕnk
(x)− ϕ(x)|| = sup

x∈I
|xnk − ϕ(x)|

= sup
x∈I

|(xnk − ynk) + (ynk − ϕ(x))|

= sup
x∈I

|xnk − ynk |+ sup
x∈I

|ynk − ϕ(x)|,

(22)
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where we choose y such that equality holds in the third line. Since Φ is not
equicontinuous, for all ϵ > 0, there exists δ > 0 such that ||ϕ(x)− ϕ(y)|| ≥ ϵ for all
ϕ ∈ Φ whenever |x− y| < δ and x, y ∈ I. Hence,

||ϕnk
(x)− ϕ(x)|| = sup

x∈I
|xnk − ynk |+ sup

x∈I
|ynk − ϕ(x)|

≥ ϵ+ sup
x∈I

|ynk − ϕ(x)|

≥ ϵ+ sup
x∈I

|ynk |

≥ ϵ+ |ynk |.

(23)

Since y ∈ I, taking the limit as k → ∞,

lim
k→∞

||ϕnk
(x)− ϕ(x)|| ≥ ϵ, (24)

a contradiction. So Φ is not sequentially compact. Hence, Φ̄ is not sequentially
compact and, by Theorem 1, not compact.
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