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Market Making

In the Avellaneda-Stoikov framework:

the mid price Sm
t follows Brownian motion.

the arrival of buy/sell market orders (MO) hitting a limit order (LO) at
distance d from the mid price, is an independent Poisson process with
intensity λ(d) = A exp(−kd) where A > 0, k > 0.

The market maker’s (MM) objective is to maximize risk-adjusted
wealth at the end of the trading period by controlling their bid price
Sb

t and ask price Sa
t at different times, under the dynamics of the mid

price Sm
t , their cash Xt , inventory Qt , and market order arrivals on

the bid and ask sides Nb
t ,N

a
t .
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Stochastic Optimal Control Problem

The optimal stochastic control problem is:

max
Sb

t ,S
a
t ∈A

E[U(XT + QTSm
T )]

dSm
t = σdWt

dXt = Sa
t dN

a
t − Sb

t dN
b
t

dQt = dNb
t − dNa

t

λb = A exp(−k(Sm
t − Sb

t ))

λa = A exp(−k(Sa
t − Sm

t ))

for Nb
t ,N

a
t Piosson processes with intensity λb, λa, σ is instantaneous

volatility, and U(·) a concave utility function. Here, A is the set of
admissible strategies δa

t , δ
b
t ; namely, Ft-adapted and bounded from

below.
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MM Control Problem

The MM caps their inventory to be bounded above by q̄ > 0 and
below by q < 0.

At time T , the MM liquidates terminal inventory QT using a MO at a
price worse than the midprice to account for ”liquidity taking fees”
and the MO walking the LOB.

The performance criterion is:

Hδ(t, x , S , q) = Et,x ,q,S

[
XT + Qδ

T (SδT − αQδ
T )− φ

∫ T

t
(Qu)2du

]
where α ≥ 0 is a fee for the MM taking liquidity (i.e. using a MO)
and the impact of the MO walking the LOB, and φ ≥ 0 is the
inventory penalty.
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Hamilton-Jacobi-Bellman

The MM’s value function is:

H(t, x , S , q) = sup
δ±∈A

Hδ(t, x ,S , q)

for A the set of admissible strategies δ±t ; namely, Ft-adapted and
bounded from below.

The optimal control problem satisfies the following
Hamilton-Jacobi-Bellman equation:

0 =∂tH +
1

2
σ2∂SSH − φq2

+ λ+ sup
δ+
{e−κ+δ+

(H(t, x + (S + δ+), q − 1,S)− H)}1q>q

+ λ− sup
δ−
{e−κ−δ−(H(t, x + (S + δ−), q + 1,S)− H)}1q<q̄

with terminal condition H(T , x ,S , q) = x + q(S − αq).
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Interpretation of DPE

Terms in the DPE equation represent (1) the arrival of MOs that may
be filled by LOs, (2) the diffusion of the asset price through the term
1
2∂SSH, and (3) the effect of penalizing deviations of inventories from
zero along the entire path of the strategy, described by the φq2 term.

The sup over δ+ contain the terms due to the arrival of the market
buy order (which is filled by a limit sell order)

Represents the change in the value function H due to the arrival of
the MO which fills the LO, so that cash increases by (S + δ+) and
inventory decreases by one unit. (Analogous terms for the market sell
orders which are filled by limit buy orders.)

However, the AS framework is inconsistent with respect to many
important LOB features.
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Inconsistencies

Price Consistency: Price and order arrivals are assumed to be independent,
so price can rise on a large sell market order; this can generate large phantom
gains for MM, since they are usually on the wrong side of the trade.

Price-Time Priority: AS framework assumes there’s no cost in changing
the bid/ask prices, as the model was originally designed for a quote-driven
market.

Price Ticks: Prices are only allowed on a fixed price grid (0.01); thus, price
is a pure-jump process with two dimensions: jump times and magnitudes.

Execution Probability: AS model uses a rate function λ(d) = A exp(−kd),
which affects execution probability of LO in a given interval. Price is
continuous so d is continuous. Because of the discrete price grid, the rate
function is truly a step function.

Order Size: AS assumes all MOs and LOs are of the same size; usually MM
will instead place LOs at many different price levels to continuously maintain
priority in LOB.
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LOB Consistency

Notation:

Let (Sb
t ,S

a
t ,S

m
t = (Sb

t + Sa
t )/2,St = Sa

t − Sb
t ) denote the bid price, ask

price, mid price and bid-ask spread respectively.
Let τb

m, τ
a
m, τ

b
l , τ

a
l , τ

b
c , τ

a
c denote the arrival times of any market sell,

market buy, limit buy, limit sell, limit buy cancellation, and limit sell
cancellation orders. Let the corresponding volume and price (LO only)
be represented by ν.

A LOB is called consistent if it satisfies direction, timing and volume
consistency.
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Direction Consistency

Direction Consistency: On arrival of a marketable sell/buy order (LO or
MO), the bid/ask price can’t move up/down while the ask/bid price can
only stay unchanged:

P

[
{Sa

τ a
m
≥ Sa

τ a−
m
} ∩ {Sb

τ a
m

= Sb
τ a−

m
}
]

= P

[
{Sb

τb
m
≤ Sb

τb−
m
} ∩ {Sa

τb
m

= Sa
τb−

m
}
]

= 1

On arrival of limit sell/buy order with price falling inside the bid-ask spread,
the ask/bid price can only move down/up while the bid price can only stay
unchanged. If the limit order is outside the bid-ask spread, the ask and bid
prices are unchanged.
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Direction Consistency Cont’d.

When direction consistency is violated, MM profit can be significantly
exaggerated. E.g. when price plunges after a sequence of sell MOs,
the MM will suffer a major loss because it has net long inventory by
taking opposite sides of the trades. If price violates direction
consistency and goes up, the MM will instead enjoy a profit.
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Timing Consistency

Timing Consistency: The bid/ask price moves only at the instants
of orders arrivals/cancellations:

P({Sb
t = Sb

t−} ∩ {S
a
t = Sa

t−}|t /∈ Γ) = 1

where Γ is the set of all stopping times of market and limit orders.
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Volume Consistency

Volume Consistency: If the volume of the marketable buy/sell order
is equal to or larger than the depth of the best ask/bid queue
(Qa

t ,Q
b
t ), the ask/bid price moves up/down; otherwise it stays

unchanged:

If the volume of the limit buy/sell cancellation is equal to the depth
of the best ask/bid queue (Qa

t ,Q
b
t ), the ask/bid price moves

up/down; otherwise, it stays unchanged.
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Inconsistent models

In the Avellaneda and Stoikov model, mid prices are independent Brownian
motions:

dSm
t = σdWt

When a buy MO arrives, half of the time the mid price will go down
since it is an independent BM, thus overstating a MM’s profit.

This is a continuous time process, so it will move even without orders.
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Towards Consistency

Observing the total independence of price and order arrivals, Cartea et al.
[Buy Low Sell High] bifurcate the buy and sell MOs into influential
(M̄+

t , M̄
−
t ) and non-influential (M̃+

t , M̃
−
t ) where (M̄+

t , M̄
−
t , M̃

+
t , M̃

−
t ) is a

multivariate Hawkes process. The midprice is a diffusion coupled with the
MOs via an unobservable mean-reverting process αt as follows:

dSm
t = (ν + αt)dt + σdWt

dαt = −ζαtdt + σαdBt + ε+dM̄t
+ − ε−dM̄t

−

where Wt and Bt and independent BMs and ν ∈ R, ζ, σ, σα, ε
+, ε− are

strictly positive.

When an influential buy MO M̄t
+

arrives, αt jumps so the midprice
Sm

t has a larger drift. However, the Wt term can still have an even
larger negative change that causes overall downward price movement.
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Weakly Consistent LOB

We call a LOB weakly consistent if the model only complies with
direction and timing consistency.

Market Making under a Weakly Consistent Limit Order Book Model
[Law & Viens, 2020] presents a weakly-consistent pure-jump market
model; however, it assumes constant order arrival intensities. Thus,
self- or mutual-excitation and inhibition between many types of LOB
order arrivals are unaccounted for.

The introduction of self-exciting arrival intensities in a
weakly-consistent LOB model makes the HJB equation analytically
intractable.

Deep Reinforcement Learning for Market Making Under a Hawkes
Process-Based Limit Order Book Model [Gasperov Konstanjcar,
2022] presents an approach to finding approximate optimal controls.
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Multivariate Hawkes processes

Definition

A p-dimensional linear Hawkes process is a in-homogeneous
p-dimensional Poisson counting process N(t) = (Nk (t); k = 1, . . . , p) with
intensity of Nk given by:

λk (t) = µk +

p∑
`=1

∫ t−

0
fk,`(t − s)dN`(s) (1)

where

µk ≥ 0 are the baseline intensities

N`(t) is the number of arrivals within [0, t] corresponding to the `-th
component

arrivals in dimension ` perturb the intensity of arrivals in dimension k
at time t by fk,`(t − s) for t > s

Generally, one uses an exponential kernel: fk,`(t) = αk,`e
−βk,`(t)
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Reinforcement Learning

Optimal controls for the weakly consistent model presented by [Law
& Viens, 2020] could be solved for using the HJB equation
Instead, [Gašperov and Kostanjčar, 2022] train a deep reinforcement
learning controller on a simulation of the LOB model they study to
learn locally optimal controls
The RL process looks like [Torres, 2020]
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Event types

Eall = {Mb
a ,M

s
a , L

b
a , L

s
a,C

b
a ,C

s
a ,M

b
n ,M

s
n}

Aggressive Market Order - one which completely depletes the best bid
or ask queue;

Aggressive Limit Order - one which has a price inside the bid-ask
spread;

Aggressive Cancellation - one which cancels the last remaining order
in the best bid or best ask queue
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Event effects on price
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Events

Let N(t) =
(
NMa

b
(t), ...,NMs

n
(t)
)

be the multivariate point process of the

number of orders in each type up to and including time t.

The associated intensity vector is λ(t) =
(
λMa

b
(t), ..., λMs

n
(t)
)

.

The mid-price Pt is given by

Pt = P0 +

 ∑
e,T(e)∈Einc

Je −
∑

e,T(e)∈Edec

Je

 δ

2

where P0 is the initial price, δ is the tick size, T (e) is the type of event e,
J(e) is the associated jump with an event e, Einc = {Mb

a ,L
b
a ,C

s
a}, and

Edec = {Ms
a,L

s
a,C

b
a}.
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Market Making Procedure

At the start of each time-step, we eliminate all outstanding limit
orders and observe the state of the environment.

The agent decides whether to post limit orders (and at which prices)
or market orders.

If the absolute value of the agent’s inventory is equal to the inventory
constraint c , c ∈ N, the order on the corresponding side is ignored.

Update all variables such as bid, ask, mid-price, spread, agent’s
inventory, and cash.

All LOB events generated by the simulation procedure are processed
sequantially, and each is followed by an update of the variables.

Executed limit orders are not replaced by new ones until the next
time-step.
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Market Making Procedure

At the end of the time-step and receives the reward Rt+4t .

Unexecuted orders are cancelled once time t +4t is reached and the
procedure iterates until terminal time T .
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Market Making Procedure: Inventory

dIt = dNb
t − dNa

t + dNmb
t − dNms

t

Nb
t - limit order buys of the MM

Na
t - limit order sells of the MM

Nmb
t - market order buys of the MM

Nms
t - market order sells of the MM

dNb
t = dNMa

s
1fill,Ma

s
+ dNMn

s
1fill,Mn

s

1fill ,Mn
s

is the indicator function whether the incoming
(non-)aggressive market order fulfils the market-maker’s limit order.
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Market Making Procedure: Cash

dXt = Qa
t dNa

t − Qb
t dNb

t − (Pa
t + εt)dNmb

t +
(
Pb

t − εt

)
dNms

t

Qa
t (Qb

t ) is price at which the agent’s ask(bid) quote is posted,

Pa
t (Pb

t ) is the best ask (bid) price,

ε is the the additional costs due to fees and market impact
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Simplifying assumptions

MM orders are aggressive with probability Z1.

Limit order cancellations are aggressive with probability Z2.

The jumps Je associated with the LOB events e are modeled by

exponential distribution with density f (x) = 1
β exp

(
− x−µ

β

)
where µ

is the location and β is scale parameter.

Jump sizes are independent of jump times.
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Controller

State space (what the agent sees)

Action space (what the agent can and should do)

Reward function

DRL model architecture and optimization

(Stanford) Math 237A 2023 29 / 52



State Space (St)

Inventory (It)

{−c , ..., c} due to inventory constraints
Min-max normalization

Spread (∆t)

Also integer (measured in ticks) and strictly positive
z-score normalization using mean/variance from controller with random
actions

Trend Variable (αt)

Describes market’s “net buying pressure”, i.e. expected buy minus sell
density
λMb

(t)− λMa (t)

Where λMx (t) = λMa
x
(t) + λMn

x
(t)

Also z-score normalization as above
Notably, can only be approximated experimentally by MM

Does not include volume (weakly consistent)!
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Action Space (At)

Essentially, how aggressive to be on each of the bid and the ask

Specifically, how much to penny each by (i.e. beat the BBO)

Let (Pb
t ,P

a
t ) denote best (bid,ask) prices

Let (Qb
t ,Q

a
t ) denote agent’s quoted market (any number)
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Action Space (At) Cont.

Ask Offset (Qa
t − Pa

t )

Bid Offset (Pb
t − Qb

t )

Crossed markets ignored
Markets crossing best bid/ask treated as market orders
All orders unit size and rounded to nearest tick
Note that offsets are described as in the paper, but will typically be
nonpositive since orders outside the BBO are never executed

Still no volume!
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Incentives for zero (or less aggressive) offsets

Maintain small inventory by lowering chance of execution in a
direction

Less aggressive → no chance of execution
Zero offset → 1

4 chance of execution
Essentially, orders sometimes exhaust the BBO, but never go deeper
into the book
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Incentives for small offsets (pennying)

Larger spread → more profit

The rest of the market is price agnostic, i.e. decides event not price

Market order events execute against agent regardless of price
Limit order events penny the BBO (i.e. agent) regardless of price
Unrealistic model of execution probability, which should decay
exponentially with spread
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Incentives for large offsets (crossing the spread)

Maintain small inventory by guaranteeing execution in a direction

Crossing the spread → market order
Never any reason to post an aggressive limit order!

Aggressive orders only serve a purpose when they cross the spread
(market orders)
Otherwise, aggressive (limit) orders are strictly bad
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Optimal Actions

When position is relatively flat

If expecting high order density, join the BBO
Otherwise, penny the BBO

Use trend variable to model order density

When position is far from zero

If spread is small, cross the spread to neutralize inventory
Otherwise, penny to neutralize inventory and be less aggressive in
opposite direction

Observe that this strategy is highly nonlinear...
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Reward Function (Rt)

Want to maximize

Eπθ

[
WT − φ

∫ T

0
|It |dt

]

Optimize over πθ : S → P(A), i.e. policies mapping state to
distribution of action
Wt = ItPt + Xt is total wealth
φ ≥ 0 punishes nonzero inventories

Note that this punishment is already partially baked in by not allowing
the agent to execute orders that exceed its inventory constraints
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Reward Function (Rt) Cont.

Implies reward function

Rt+∆t = ∆Wt+∆t − φ
∫ t+∆t

t
|Is |ds

Each timestep rewards wealth gains, punishes nonzero inventory
Integral piecewise constant → trivial computation
Absolute inventory (vs quadratic inventory) has convenient VaR (value
at risk) interpretation

Not elaborated on in the paper...
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Controller Design (NN)

2 fully-connected hidden layers of 64 neurons

ReLU activation

Simple controller design common in DRL

Empirically comparable or better than sophisticated models for LOB
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Training Algorithm (SAC: Soft Actor-Critic)

Entropy maximization

Balances explore and exploit

Learns 2 Q-functions

Mapping (state,action) to value
Considers min value between the two

SAC generally robust, multiple modes of near-optimal behavior

Empirically beats DQN, TD3

106 training timesteps
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Experiments

Compare the performance of their approach against some benchmarks

Use Monte Carlo to generate synthetic data.

Standard MM benchmarks like the (Avellaneda, Stoikov; 2008)
approximations are ill-suited since they don’t take into account
neither the existence of the bid-ask spread nor the discrete nature of
the underlying LOB.
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Benchmarks

Consider a class of MM strategies linear in inventory and including
inventory constraints. best performing: LIN strategy.

Q i
t − P i

t = αi + βi It

Simple (SYM) strategy: always places limit orders precisely at the
best bid and the best ask.

Qa
t = Pa

t , Qb
t = Pb

t
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Risk and performance metrics

Profit and Loss (PnL) distribution statistics (of the terminal wealth)

Mean episode return (PnL− discounted inventories)

Mean Absolute Position (MAP)

MAP =
1

N

N∑
k=1

|Ik∆t | ,

where N is the number of time-steps in an episode.

Sharpe ratio

SR =
µWT

σWT

,

where µWT
(σWT

) denotes the mean (standard deviation) of the
terminal wealth (PnL).

(Mean PnL)/MAP - variant of (Gasperov and Kostanjcar, 2021)
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Risk and performance metrics

(Stanford) Math 237A 2023 45 / 52



Terminal PnL Distribution
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Terminal Inventory Distribution
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PnL over time
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Sensitivity Analysis

Add noise to the intensity of the arrival rate λ′s of all order types.

More precisely, three different noise sizes were considered — Gaussian
noise based with mean 0 and variance 0.1, 0.2, 0.3.

λk(t) = µk +

p∑
l=1

∫ t−

0
fk,l (t − s)dNl (s) + σBt

σ = 0.1, 0.2, 0.3
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Sensitivity Analysis
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Sensitivity Analysis, 2

Vary transaction costs.

dXt = Qa
t dNa

t − Qb
t dNb

t − (Pa
t + εt)dNmb

t +
(
Pb

t − εt

)
dNms

t
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Sensitivity Analysis, 2
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