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1 Introduction

We present a summary of Auto-Encoding Variatioanl Bayes due to Kingma and
Welling [1]. This presents a framework for efficiently approximating inference and
learning with directed probabilistic models whose continuous latent variables have
intractable posterior distributions. The variational Bayesian (VB) arpproach uses
optimization of an approximation to the posterior. However, the standard mean-
field technique requires analytical solutions to an expectation with respect to an
approximate posterior.

This paper shows how a reparameterization of the variational lower bound gives a
differentiable unbiased estimator of the lower bound, which is termed Stochastic Gradi-
ent Variational Bayes (SGVB). The SGVB estimator can be leveraged for approximate
posterior inference in probabilistic models with continuous latent parameters.

2 Method

2.1 Problem Setup

Let X = {x(i)}Ni=1 be a dataset of i.i.d. samples for discrete variable x. The data
is generated by a random process which involves an unobserved continuous random
variable z. This process is as follows:

1. A quantity z(i) is sampled from a prior distribution pθ∗(z).

2. A quantity x(i) is sampled from a conditional distribution pθ∗(x|z).

The prior pθ∗(z) and likelihood pθ∗(x|z) come from parametric families of distribu-
tions pθ(z) and pθ(x|z), respectively. Moreover, their PDFs are differentiable almost
everywhere. The true parameters θ∗ annd latent variables z(i) are unknown.

We are interested in efficient approximation and inference of maximum likelihood
(ML) or maximum a posteriori (MAP) estimation of the global parameters in the
setting where the following conditions hold:
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1. Intractability: the integral of the marginal

pθ(x) =

∫
pθ(z)pθ(x|z)dz (1)

is not tractable, i.e. the posterior pθ(z|x) = pθ(x|z)pθ(z)/pθ(x) is intractable.
This is common for complex likelihood functions, e.g. pθ(x|z) is a neural network.

2. Large dataset: Batch optimization is too costly due to large amount of data.
Instead, we want to make parameter updates via small minibatches.

As such, we define a recognition model qϕ(z|x), which approximates true
posterior pθ(x|z). The unobserved variables z are latent representations or codes.
The recognition model is a probabilistic encoder, since it produces a probability
distribution over possible z from which x was generated. On the other hand, the
likelihood pθ(x|z) is a probabilistic decoder, i.e. produces distribution over possible x

given an unobserved z. The probabilistic graphical model representing this problem is
shown in Figure 1.

Figure 1: Solid lines represent the generative model pθ(z)pθ(x|z). Dashed lines
represent variational approximation qϕ(z|x) to true posterior pθ(z|x). The variational
parameters ϕ are jointly learned with generative model parameters θ.

2.2 Variational Bound

The marginal likelihood is a sum over marginal likelihood of the i.i.d. samples:

log pθ(x
(1), . . . ,x(N)) =

N∑
i=1

log pθ(x
(i)). (2)
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Hence consider the follow KL divergence:

DKL(qϕ(z|x(i)||pθ(z|x(i)))

=

∫
Z
qϕ(z|x(i)) log

qϕ(z|x(i))

pθ(z|x(i))
dz

= −
∫
Z
qϕ(z|x(i)) log

pθ(z|x(i))

qϕ(z|x(i))
dz

−
∫
Z
qϕ(z|x(i)) log

pθ(z,x
(i))

pθ(x(i))qϕ(z|x(i))
dz

= −
(∫

Z
qϕ(z|x(i)) log

pθ(z,x
(i))

qϕ(z|x(i))
dz−

∫
Z
qϕ(z|x(i)) log pθ(x

(i))dz

)
= log pθ(x

(i))

∫
Z
qϕ(z|x(i))dz−

∫
Z
qϕ(z|x(i)) log

pθ(z,x
(i))

qϕ(z|x(i))
dz

= log pθ(x
(i)) + L(θ, ϕ;x(i))

(3)

That is,
log pθ(x

(i)) = DKL(qϕ(z|x(i)||pθ(z|x(i))) + L(θ, ϕ;x(i)), (4)

where the first term on the right-hand side is the KL divergence of the approximate
posterior qϕ(z|x(i)) from the true posterior pθ(z|x(i)). The second term L(θ, ϕ;x(i))

is called the variational lower bound on the marginal likelihood of datapoint i.
Therefore,

log pθ(x
(i)) ≥ L(θ, ϕ;x(i)) = Eqϕ(z|x)[− log qϕ(z|x) + log pθ(x, z)], (5)

where

L(θ, ϕ;x(i)) = −DKL(qϕ(z|x(i))||pθ(z)) + Eqϕ(z|x(i)) [log pθ(x, z)] . (6)

Here, Eqϕ(z|x(i)) [log pθ(x, z)] on the right-hand side is referred to as the reconstruction
error. We need to optimize the lower bound L(θ, ϕ;x(i)) with respect to variational
parameters ϕ and generative parameters θ. However, computing the gradient with
respect to ϕ is non-trivial. In particular, we use a Monte Carlo gradient estimate:

∇ϕEqϕ(z)[f(z)] = Eqϕ(z)[f(z)∇qϕ(z) log qϕ(z)]

≈ 1

L

L∑
l=1

f(z)∇qϕ(z(l)) log qϕ(z
(l))

(7)

where z(l) ∼ qϕ(z|x(i)). However, this is a high variance and unstable method.

2.3 SGVB estimator

We can reparameterize the random variable z̃ ∼ qϕ(z|x) using a differentiable trans-
formation gϕ(ϵ,x) of an auxiliary noise variable ϵ:

z̃ = gϕ(ϵ,x) where ϵ ∼ p(ϵ). (8)
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We estimate the expectation of f(z) with respect to recognition model qϕ(z|x) using
Monte Carlo estimates:

Eqϕ(z|x(i))[f(z)] = Ep(ϵ)[f(gϕ(ϵ,x
(i)))]

≈ 1

L

L∑
i=1

f(gϕ(ϵ
(l),x(i)))

(9)

where ϵ(l) ∼ p(ϵ). Invoking the variational lower bound in Equation 5, we obtain the
Stochastic Gradient Variational Bayes estimator L̃A(θ, ϕ;x(i)) ≈ L(θ, ϕ;x(i)):

L̃A(θ, ϕ;x(i)) =
1

L

L∑
l=1

log pθ(x
(i), z(i,l))− log qϕ(z

(i,l)|x(i)) (10)

such that z(i,l) = gϕ(ϵ
(i,l),x(i)) and ϵ(l) ∼ p(ϵ).

2.4 Integration of −DKL(qϕ(z)||pθ(z)), Gaussian

We give an example where −DKL(qϕ(z)||pθ(z)) in Equation 6 can be integrated
analytically. Suppose pθ(z) = N (0, I) and the recognition model qϕ(z|x(i)) are
Gaussian. Let z ∈ Rd. Likewise, let µ and σ denote the variational mean and standard
deviation, respectively. Then∫

qϕ(z) log p(z)dz =

∫
N (z;µ, σ2) logN (z;0, I)dz

= −N

2
log(2π)− 1

2

N∑
i=1

(µ2i + σ2i )

(11)

and ∫
qϕ(z) log qϕ(z)dz =

∫
N (z;µ, σ2) logN (z;µ, σ2)dz

= −N

2
log(2π)− 1

2

N∑
i=1

(1 + log σ2i ).

(12)

Hence,

−DKL(qϕ(z)||pθ(z)) =
∫

qϕ(z)(log pθ(z)− log qϕ(z))dz

=
1

2

N∑
i=1

(1− µ2i − σ2i log(σ
2
i ))

(13)

2.5 Remark on SGVB estimator

Since we can sometimes find an analytic solution for the KL-divergence DKL(qϕ(z|x(i))||pθ(z))
in Equation 6, whereby only the reconstruction error Eqϕ(z|x(i)) [log pθ(x, z)] requires
estimation via sampling. As such, the KL-divergence term is a regularizer of ϕ, forcing
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the recognition model to be closer to the prior. Thus, assuming analytic solution,
we get another SGVB estimator L̃B(θ, ϕ;x(i)) ≈ L(θ, ϕ;x(i)), which has less variance
than the LA estimator:

LB(θ, ϕ;x(i)) = −DKL(qϕ(z|x(i)||pθ(z)) +
1

L

L∑
l=1

log pθ(x
(i)|z(i,l)) (14)

where z(i,l) = gϕ(ϵ
(i,l), x(i)) and ϵ(l) ∼ p(ϵ).

Analogous to auto-encoders, Equation 14 has a first term that behaves as a
regularizer and second term that is the expected negative reconstruction error. In
particular, gϕ(·) maps a datapoint x(i) and random noise ϵ(l) to a sample from
the recognition model z(i,l) = gϕ(ϵ

(l),x(i)) where z(i,l) ∼ qϕ(z|x(i)). Then we form
log pθ(x

(i)|z(i,l)) which is the probability density of x(i) under generative model, given
z(i,l), i.e. the negative reconstruction error.

2.6 The Reparameterization Trick

Let z be a continuous random variable and z ∼ qϕ(z|x) be a conditional distribution.
One can express the random variable z as a determinsitic variable z = gϕ(ϵ,x) where
gϕ(·) is a vector-valued function and ϵ is an auxiliary variable with independent
marginal p(ϵ). Hence, one case rewrite the expectation with respect to qϕ(z|x)
such that the Monte Carlo estimate is differentiable with respect to ϕ. Denote by
dz =

∏
i dzi the infinitesimal of an n-dimensional vector. For a deterministic function

z = gϕ(ϵ,x), it follows that qϕ(z|x)
∏

i dzi = p(ϵ)
∏

i dϵi. Hence,∫
qϕ(z|x)f(z)dz =

∫
p(ϵ)f(z)dϵ

=

∫
p(ϵ)f(gϕ(ϵ,x))dϵ.

(15)

Thus, we obtain a differentiable estimator:

p(ϵ)f(gϕ(ϵ,x))dϵ =
1

L

L∑
l=1

f(gϕ(x, ϵ
(l))) (16)

such that ϵ(l) ∼ p(ϵ).
For instance, if z ∼ p(z|x) = N (µ, σ2), then we can define z = µ + σϵ where

ϵ ∼ N (0, 1). Thus,

Ez∼N (µ,σ2)[f(z)] = Eϵ∼N (0,1)[f(µ+ σϵ)]

=
1

L

L∑
l=1

f(µ+ σϵ(l))
(17)

where ϵ(l) ∼ N (0, 1).
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3 Variational Auto-Encoder

Suppose we use a neural network for the probabilistic encoder qϕ(z|x). Let the prior
over latent variables be a standard multivariate Gaussian pθ(z) = N (z;0, I). Let
pθ(x|z) be a multivariate Gaussian whose distribution parameters, given z are the
output of a full-connected neural network. Suppose the variational approximate
posterior is a multivariate Gaussian with diagonal covariance:

log qϕ(z|x(i)) = logN (z;µ(i), σ2
(i)
I) (18)

with mean µ(i) and standard deviation σ2
(i)
I given by the output of a neural network

as a function of datapoint x(i) and variational parameters ϕ.
We sample from the posterior z(i,l) ∼ qϕ(z|x(i)) with z(i,l) = gϕ(x

(i), ϵ(l)) =

µ(i)+σ(i)⊙ϵ(l) and ϵ(l) ∼ N (0, I), where ⊙ denotes element-wise multiplication. Since
pθ(z) and qϕ(z|x) are assumed to be Gaussian, we can use the estimator in Equation
14. Hence, it follows that for datapoint x(i):

L(θ, ϕ;x(i)) ≈ 1

2

N∑
j=1

(1− (µ
(i)
j )2 − (σ

(i)
j )2 + log((σ

(i)
j )2) +

1

L

L∑
l=1

log pθ(x
(i)|z(i,l)) (19)

whereby z(i,l) = µ(i) + σ(i) ⊙ ϵ(l) and ϵ(l) ∼ N (0, I).

Remark 1 As mentioned, we can use a Gaussian encoder or decoder parameterized
by a neural network. That is:

log p(x|z) = logN (x;µ, σ2I)

µ = W4h+ b4

log σ2 = W5h+ b5

h = tanh(W3z+ b3)

(20)

where {W3,W4,W5,b3,b4,b5} are weights and biases of the neural network.

3.1 Full Variational Bayes

We can perform variational inference on both parameters θ and latent variables z.
Let pα(θ) be a hyperprior for parameters θ, parameterized by α. Thus, the marginal
likelihood is:

log pα(X) = DKL(qϕ(θ)||pα(θ|X)) + L(ϕ;X) (21)

where the first term on the right-hand side is the KL divergence of the approximate
from the true posterior, and second term L(ϕ;X) is the variational lower bound of
the marginal likelihood given by:

L(ϕ;X) =

∫
qϕ(θ)(log pθ(X) + log pα(θ)− log qϕ(θ))dθ. (22)

Here, the log pθ(X) is a sum over maginal likelihoods of individual datapoints
log pθ(X) =

∑N
i=1 log pθ(x

(i)) such that

log pθ(x
(i)) = DKL(qϕ(z|x(i)||pθ(z|x(i))) + L(θ, ϕ;x(i)) (23)
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where the first term is the KL divergence of the approximate to true posterior and
L(θ, ϕ;x(i)) is the variational lower bound of the marginal likelihood for x(i):

L(θ, ϕ;x(i)) =
∫

qϕ(z|x)
(
log pθ(x

(i)|z) + log pθ(z)− log qϕ(z|x)
)
dz. (24)

Furthermore, we can reparameterize conditional samples z̃ ∼ qϕ(z|x) as:

z̃ = gϕ(ϵ,x), where ϵ ∼ p(ϵ). (25)

The prior p(ϵ) and function gϕ(ϵ,x) are chosen such that

L(θ, ϕ;x(i)) =

∫
qϕ(z|x)(log pθ(x(i)|z) + log pθ(z)− log qϕ(z|x))dz

=

∫
p(ϵ)(log pθ(x

(i)|z) + log pθ(z)− log qϕ(z|x))|z=gϕ(ϵ,x(i))dϵ

(26)

Likewise, for the approximate posterior qϕ(θ):

θ̃ = hϕ(ζ) where ζ ∼ p(ζ). (27)

As before, we chose prior p(ζ) and hϕ(ζ) such that:

L(ϕ;X) =

∫
qϕ(θ)(log pθ(X) + log pα(θ)− log qϕ(θ))dθ

=

∫
p(ζ)(log pθ(X) + log pα(θ)− log qϕ(θ))|θ=hϕ(ζ)dζ.

(28)

Furthermore, let

fϕ(x, z, θ) = N(log pθ(x|z) + log pθ(z)− log qϕ(z|x)) + log pα(θ)− log qϕ(θ). (29)

Invoking Equation 26 and 28, the Monte Carlo estimate of the variational lower bound
for x(i) is:

L(ϕ;X) ≈ 1

L

L∑
l=1

fϕ(x
(l), gϕ(ϵ

(l),x(l)), hϕ(ζ
(l))) (30)

where ϵ(l) ∼ p(ϵ) and ζ(l) ∼ p(ζ). This estimator is only a function of samples from
p(ϵ) and p(ζ), independent of the variational parameters ϕ. Hence, we can differentiate
this Monte Carlo estimator with respect to ϕ and use stochastic optimization methods
to compute gradients in tandem.
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