NMT DISTILLATION

By: Sergio Charles

With: Eric & Oleksii Special Thanks: Som & Sandeep

August 31, 2021

- Background & Motivation
- Hinton-style Distillation
 - ModelPT Distillation
- DistilBERT-style Distillation
- Sequence-Level Distillation
 - Greedy-search and beam-search sampling
- Hybrid Distillation
- Distillation in the Low Data Regime
- NMT Distillation Recommendations
- Future Work

NMT MODEL ARCHITECTURE Attentional seq-to-seq encoder-decoder

- Models $p(\mathbf{y}|\mathbf{x})$ with source sentence $\mathbf{x} = [\mathbf{x}_1, \dots, \mathbf{x}_{|\mathcal{S}|}]$ and target sentence $\mathbf{y} = [\mathbf{y}_1, \dots, \mathbf{y}_{|\mathcal{T}|}]$
- Encoder: transforms x into continuous representations (e.g. Bi-drectional RNN, Transformer)
- Decoder: predict conditional distribution of each target word using beam search, conditioned on encoding
- Machine translation seeks to solve:

 $\operatorname{argmax}_{\mathbf{y}\in\mathcal{T}} p(\mathbf{y}|\mathbf{x})$

NMT MODEL ARCHITECTURE Attentional seq-to-seq encoder-decoder

• Minimize NLL on parallel training set of N sentences [Hassan et al. 2018]:

$$\mathcal{L}_{\text{NLL}}(\theta) = -\sum_{n=1}^{N} \log p(\mathbf{y}^{(\mathbf{n})} | \mathbf{x}^{(\mathbf{n})}; \theta)$$

= $-\sum_{n=1}^{N} \sum_{t=1}^{|\mathcal{T}|} \log p(\mathbf{y}^{(\mathbf{n})}_{t} | \mathbf{y}^{(\mathbf{n})}_{< t}, \mathbf{h}^{(\mathbf{n})}_{t-1}, \text{Att}(\text{Enc}(\mathbf{x}^{(\mathbf{n})}), \mathbf{y}^{(\mathbf{n})}_{< t}, \mathbf{h}^{(\mathbf{n})}_{t-1}); \theta)$

MOTIVATING DISTILLATION FOR NMT

The AI scaling law for LLMs

GOAL: Minimize neural machine translation model size while maintaining accuracy

- Background & Motivation
- Hinton-style Distillation
 - ModelPT Distillation
- DistilBERT-style Distillation
- Sequence-Level Distillation
 - Greedy-search and beam-search sampling
- Hybrid Distillation
- Distillation in the Low Data Regime
- NMT Distillation Recommendations
- Future Work

KNOWLEDGE DISTILLATION [HINTON ET AL. 2015] Negative log-likelihood for normal training

- Train small student network to learn from larger teacher network.
- Hinton et al. 2015 matches the student and teacher predictions via cross-entropy.
- For a classifier over \mathcal{V} classes, minimize NLL (cross-entropy):

$$\mathcal{L}_{\text{NLL}}(\theta) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{|\mathcal{V}|} \mathbb{1}\{y^{(n)} = k\} \log p(y^{(n)} = k | x; \theta)$$

between degenerate one-hot encoded data distribution (all mass in one class) and model distribution $p(y|x;\theta)$

KNOWLEDGE DISTILLATION [HINTON ET AL. 2015] Small student network learns from large teacher network

- Train student classifier on the soft-labels of the teacher classifier rather than ground-truth labels
- Trained teacher classifier assigns probabilities to all labels
- "Relative probabilities of incorrect answers tell us a lot about how the [teacher] model tends to generalize"
- With learned teacher distribution $q(y|x; \theta_T)$, minimize cross entropy with teacher distribution on transfer set:

$$\mathcal{L}_{\text{KD}}(\theta;\theta_T) = -\frac{1}{N} \sum_{n=1}^{N} q(y^{(n)} = k | x^{(n)}; \theta_T) \log p(y^{(n)} = k | x^{(n)}; \theta)$$

where
$$q_k := q(y = k | x; \theta_T) = \frac{\exp(z_k)}{\sum_{j=1}^{|\mathcal{V}|} \exp(z_j)}$$
 and $p_k := p(y = k | x; \theta) = \frac{\exp(w_k)}{\sum_{j=1}^{|\mathcal{V}|} \exp(w_j)}$

KNOWLEDGE DISTILLATION [HINTON ET AL. 2015] Tempering distributions

• Compute the soft labels by using a tempered softmax (e.g. for student):

$$(p^{\tau})_k = \frac{\exp(w_k/\tau)}{\sum_{j=1}^{|\mathcal{V}|} \exp(w_j/\tau)}$$

Taken from Distilling Knowledge in Neural Networks Blog [Sayak Paul]

KNOWLEDGE DISTILLATION [HINTON ET AL. 2015] Interpolating objectives

- Interpolate between NLL and KD with mixing hyper-parameter lpha :

$$\mathcal{L}(\theta;\theta_T) = (1-\alpha)\mathcal{L}_{\text{NLL}}(\theta) + \alpha\mathcal{L}_{\text{KD}}(\theta;\theta_T)$$

where $\mathcal{L}_{\mathrm{KD}} = \alpha \mathcal{L}_{CE}(\mathbf{q}^{\tau}, \mathbf{p}^{\tau}) + (\mathbf{1} - \alpha) \mathcal{L}_{\mathrm{CE}}(\mathbf{p}^{\tau}, \mathbf{y}_{\mathrm{true}})$

KNOWLEDGE DISTILLATION [HINTON ET AL. 2015] Of gradients & weights

If temperature is high compared to the logits:

$$\frac{\partial \mathcal{L}_{\text{CE}}}{\partial w_k} = \frac{1}{\tau} \left(\frac{\exp(w_k/\tau)}{\sum_{j=1}^{|\mathcal{V}|} \exp(w_k/\tau)} - \frac{\exp(z_k/\tau)}{\sum_{j=1}^{|\mathcal{V}|} \exp(z_k/\tau)} \right)$$
$$\approx \frac{1}{\tau} \left(\frac{1+w_k/\tau}{N+\sum_{k=1}^{|\mathcal{V}|} w_k/\tau} - \frac{1+z_k/\tau}{N+\sum_{k=1}^{|\mathcal{V}|} z_k/\tau} \right)$$

• If logits are zero-meaned for each example in transfer set:

$$\frac{\partial \mathcal{L}_{\rm CE}}{\partial w_k} = \frac{1}{N\tau^2} (w_k - z_k)$$

KNOWLEDGE DISTILLATION FOR NMT Word-level knowledge distillation

• With the tempered teacher distribution $q(y|x; \theta_T)$, minimize cross entropy with tempered student distribution:

$$\mathcal{L}_{\text{WORD-LEVEL}} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{|\mathcal{T}|} \sum_{k=1}^{|\mathcal{V}|} q(y_t^{(n)} = k | \mathbf{x}^{(n)}, \mathbf{y}_{<\mathbf{t}}^{(n)}) \log \mathbf{p}(\mathbf{y}_{\mathbf{t}}^{(n)} = \mathbf{k} | \mathbf{x}^{(n)}, \mathbf{y}_{<\mathbf{t}}^{(n)})$$

• Interpolate between NLL and Word-level KD with mixing hyper-parameter lpha :

 $\mathcal{L}(\theta; \theta_T) = (1 - \alpha) \mathcal{L}_{\text{NLL}}(\theta) + \alpha \mathcal{L}_{\text{WORD-LEVEL}}(\theta; \theta_T)$

KNOWLEDGE DISTILLATION FOR NMT Detour on KL Divergence

• Measure of how far distribution p is from q:

$$D_{\mathrm{KL}}(p||q) := \mathbb{E}_{x \sim p} \left[\log \frac{p(x)}{q(x)} \right] = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

• In terms of cross entropy:

$$D_{\mathrm{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log p(x) - \sum_{x \in \mathcal{X}} p(x) \log q(x) = -H(p) + H(p,q)$$

where entropy is fixed for the training dataset.

KNOWLEDGE DISTILLATION [HINTON ET AL. 2015] KL Divergence distillation objective

• Interpolate between NLL and KL divergence KDL:

$$\mathcal{L}(\theta; \theta_T) = (1 - \alpha) \mathcal{L}_{\text{NLL}}(\theta) + \alpha \mathcal{L}_{\text{KD}}(\theta; \theta_T)$$

where $\mathcal{L}_{KD} = D_{\mathrm{KL}}(\mathbf{q}^{\tau} || \mathbf{p}^{\tau})$

TRAINING SETUP Datasets and hyperparameters

- Training set WMT21 DE->EN (same as transfer set in this part)
- Validation sets WMT{13, 14, 18, 19, 20} DE->EN
- Teacher architecture 24x4 encoder-decoder, attention_heads=16, hidden_size=1024, inner_sizer=4096
- Student architectures

•Slim architectures - 1x1 and 3x3 encoder-decoder, attention_heads=4, hidden_size=256, inner_size=1024

•Wide architectures - 1x1 and 3x4 encoder-decoder, attention_heads=16, hidden_size=1024, inner_size=4096

- **Temperature** Perform grid search over T=[0.5, 1.0, 2.0, 5.0, 10.0]
- Label smoothing Not recommended [Muller et al., 2019]
- **Optimizer** Adam optimizer w/ inverse square root annealing schedule, lr=4e-4, warm_up_steps=1.5e4, steps=1.5e5

HINTON DISTILLATION FOR NMT

Teacher Results

WMT{13,14,18,19,20} German -> English

Wide 24x6	WMT13	WMT14	WMT18	WMT19	WMT20
sacreBLEU	45.4	47.1	37.1	34.4	40.1
Params.	468 M				

HINTON DISTILLATION FOR NMT

1x1 Student Results

WMT20 German -> English

Slim 1x1	Temp=0.5	Temp=1.0	Temp=2.0	Temp=5.0	Temp=10.0	Params./Compression
Baseline	24.6	24.6	24.6	24.6	24.6	18.9 M/24.7
$\mathcal{L}_{ ext{KD}} - \emptyset$	25.3	24.1	19.3	8.9	6.2	18.9 M/24.7
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$	25.7	24.5	22.2	12.5	10.4	18.9 M/24.7
Wide 1x1	Temp=0.5	Temp=1.0	Temp=2.0	Temp=5.0	Temp=10.0	Params./Compression
Baseline	32.7	32.7	32.7	32.7	32.7	95.0 M/5.0
$\mathcal{L}_{ ext{KD}} - \emptyset$	32.4	33.5	31.4	27.3	14.8	95.0 M/5.0
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$	32.8	34.6	30.8	26.1	22.1	95.0 M/5.0
Weights	1.0	1.0	2.0	40.0	200.0	-

HINTON DISTILLATION FOR NMT

3x3 Student Results

WMT20 German -> English

Slim 3x3	Temp=0.5	Temp=1.0	Temp=2.0	Temp=5.0	Temp=10.0	Params./Compression
Baseline	29.6	29.6	29.6	29.6	29.6	21.9 M/21.3
$\mathcal{L}_{ ext{KD}} - \emptyset$	30.1	31.8	29.3	24.1	17.3	21.9 M/21.3
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$	31.3	32.5	31.9	27.5	22.1	21.9 M/21.3
Wide 3x3	Temp=0.5	Temp=1.0	Temp=2.0	Temp=5.0	Temp=10.0	Params./Compression
Baseline	36.9	36.9	36.9	36.9	36.9	153.0 M/3.0
$\mathcal{L}_{ ext{KD}} - \emptyset$	36.3	36.5	33.1	28.1	20.1	153.0 M/3.0
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$	37.1	38.9	34.4	26.7	23.5	153.0 M/3.0
Weights	1.0	1.0	2.0	40.0	200.0	-

- Background & Motivation
- Hinton-style Distillation
 - ModelPT Distillation
- DistilBERT-style Distillation
- Sequence-Level Distillation
 - Greedy-search and beam-search sampling
- Hybrid Distillation
- Distillation in the Low Data Regime
- NMT Distillation Recommendations
- Future Work

HOW TO USE? Nemo Guide for ModelPT Distillation [Som]

- Background & Motivation
- Hinton-style Distillation
 - ModelPT Distillation
- DistilBERT-style Distillation
- Sequence-Level Distillation
 - Greedy-search and beam-search sampling
- Hybrid Distillation
- Distillation in the Low Data Regime
- NMT Distillation Recommendations
- Future Work

DISTILBERT-STYLE DISTILLATION FOR NMT Triple loss objective

• Initialization: instantiate student encoder-decoder by sampling 1 of every n layers from teacher encoder-decoder layers

•E.g. 24x6 teacher->3x3 student: sample 1 every 8 from encoder & 1 every 2 from decoder

Triple loss linear combination:

$$\begin{split} \mathcal{L} &= \alpha_{\mathrm{KD}} \mathcal{L}_{\mathrm{KD}} + \alpha_{\mathrm{NLL}} \mathcal{L}_{\mathrm{NLL}} + \alpha_{\mathrm{cos}} \mathcal{L}_{\mathrm{cos}} \\ \text{where} \quad \mathcal{L}_{\mathrm{cos}}(\mathbf{h_s}, \mathbf{h_t}) = \mathbf{1} - \frac{\mathbf{h_s} \cdot \mathbf{h_t}}{||\mathbf{h_s}||||\mathbf{h_t}||} \end{split}$$

DISTILBERT-STYLE DISTILLATION FOR NMT

DistilBERT Ablation Study

Teacher: 32.7 sacreBLEU | Student: 1x1 Wide DE->EN, 95M params.

No Initialization	Temp=0.5	Temp=1.0	Temp=2.0	Temp=5.0	Temp=10.0	Max	$\max_{\Delta S}$
$\emptyset - \mathcal{L}_{ m NLL} - \mathcal{L}_{ m cos}$	-	32.3	-	-	-	32.3	-2.6
$\mathcal{L}_{KD} - \emptyset - \mathcal{L}_{\mathrm{cos}}$	32.4	32.1	29.0	24.1	18.2	32.4	-2.5
$\mathcal{L}_{KD} - \mathcal{L}_{ ext{NLL}} - \emptyset$	32.8	34.6	30.8	26.1	22.1	34.6	
$\mathcal{L}_{KD} - \mathcal{L}_{ ext{NLL}} - \mathcal{L}_{ ext{cos}}$	32.1	34.9	30.8	26.3	23.5	34.9	-
DistilBERT Initialization	Temp=0.5	Temp=1.0	Temp=2.0	Temp=5.0	Temp=10.0	Max	$\max_{\Delta S}$
$\emptyset - \mathcal{L}_{ m NLL} - \mathcal{L}_{ m cos}$	-	23.5	-	-	-	23.5	-0.9
$\mathcal{L}_{KD} - \emptyset - \mathcal{L}_{\cos}$	24.2	23.7	20.1	13.1	4.0	23.7	-0.7
$\mathcal{L}_{KD} - \mathcal{L}_{ ext{NLL}} - \emptyset$	23.9	24.3	22.3	16.0	12.8	24.3	-0.1
$\mathcal{L}_{KD} - \mathcal{L}_{ m NLL} - \mathcal{L}_{ m cos}$	24.4	24.2	22.2	16.0	11.2	24.4	-

- Background & Motivation
- Hinton-style Distillation
 - ModelPT Distillation
- DistilBERT-style Distillation
- Sequence-Level Distillation
 - Greedy-search and beam-search sampling
 - Interpolation
- Hybrid Distillation
- Distillation in the Low Data Regime
- NMT Distillation Recommendations
- Future Work

SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016] Overview

• Sequence level distribution:

$$p(\mathbf{y}|\mathbf{x}) = \prod_{\mathbf{t}=\mathbf{1}}^{|\mathcal{T}|} \mathbf{p}(\mathbf{y}_{\mathbf{t}}|\mathbf{x}, \mathbf{y}_{<\mathbf{t}})$$

• Using the teacher sequence distribution $q(\mathbf{y}|\mathbf{x})$ over all possible sequences:

$$\mathcal{L}_{\text{SEQ-KD}} = -\sum_{\mathbf{y}\in\mathcal{T}} q(\mathbf{y}|\mathbf{x}) \log \mathbf{p}(\mathbf{y}|\mathbf{x})$$

• Due to the exponential number of terms, approximate with mode:

$$q(\mathbf{y}|\mathbf{x}) \sim \mathbb{1}\{\mathbf{y} = \operatorname{argmax}_{\mathbf{y} \in \mathcal{T}} \mathbf{q}(\mathbf{y}|\mathbf{x})\}$$

SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016] Approximating the mode

• Greedy-search sampling - We can greedily sample the sequence of words

•While cheap, from experiments, it is not as effective as beam search

- Beam-search sampling (K=1) Run beam search with teacher model to obtain prediction \hat{y} (expensive!)
- Why? Large portion of teacher's distribution mass **q** lies in single output sequence
- Step 1: Train teacher model
- Step 2: Run beam search over training set with teacher to get "pseudo-label" dataset
- Step 3: Train the student network with cross entropy on new dataset

SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016] Sequence-level Interpolation

• Train student model as mixture of sequence level teacher-generated dataset and original training dataset:

$$\mathcal{L} = -(1 - \alpha)\mathcal{L}_{\text{SEQ-NLL}} + \alpha \mathcal{L}_{\text{SEQ-KD}}$$
$$= -(1 - \alpha)\log p(\mathbf{y}|\mathbf{x}) - \alpha \sum_{\mathbf{y} \in \mathcal{T}} \mathbf{q}(\mathbf{y}|\mathbf{x})\log \mathbf{p}(\mathbf{y}|\mathbf{x})$$

• Approximate second objective with beam search:

$$\mathcal{L}_{\text{SEQ-KD}} \approx -\sum_{\mathbf{y} \in \mathcal{T}} \mathbb{1}\{\mathbf{y} = \mathbf{\hat{y}}\} \log \mathbf{p}(\mathbf{y} | \mathbf{x})$$
$$= -\log p(\mathbf{y} = \mathbf{\hat{y}} | \mathbf{x})$$

• View interpolation as a form of regularization due to noisy data augmentation

SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016] Three variants

SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016]

WMT20 German -> English

- Temperature 1
- 1x1 wide student baseline 32.7 sacreBLEU
- 3x3 slim student baseline 29.6 sacreBLEU

1x1 wide student

Gold dataset mixing ratio	Teacher-generated dataset mixing ratio	sacreBLEU
0.1	0.9	33.1
0.34	0.66	32.4
0.66	0.34	33.2
0.9	0.1	32.9

3x3 slim student

Gold dataset mixing ratio	Teacher-generated dataset mixing ratio	sacreBLEU
0.1	0.9	30.6
0.34	0.66	30.4
0.66	0.34	30.3
0.9	0.1	29.4

- Background & Motivation
- Hinton-style Distillation
 - ModelPT Distillation
- DistilBERT-style Distillation
- Sequence-Level Distillation
 - Greedy-search and beam-search sampling
- Hybrid Distillation
- Distillation in the Low Data Regime
- NMT Distillation Recommendations
- Future Work

A hybrid of sequence-level interpolation and Hinton-style knowledge distillation

• Apply a hybrid of the two knowledge distillations:

$$\mathcal{L} = \alpha_{\text{SEQ-NLL}} \mathcal{L}_{\text{SEQ-NLL}} + \alpha_{\text{SEQ-KD}} \mathcal{L}_{\text{SEQ-KD}} + \alpha_{\text{WORD-KD}} \mathcal{L}_{\text{WORD-KD}}$$
$$\approx -\alpha_{\text{SEQ-NLL}} \log \mathbf{p}(\mathbf{y}|\mathbf{x}) - \alpha_{\text{SEQ-KD}} \sum_{\mathbf{y} \in \mathcal{T}} \mathbf{q}(\mathbf{y}|\mathbf{x}) \log \mathbf{p}(\mathbf{y}|\mathbf{x}) + \alpha_{\text{WORD-KD}} \mathbf{D}_{\text{KL}}(\mathbf{q}||\mathbf{p})$$

• Using the mode approximation:

$$\mathcal{L} = -\alpha_{\text{SEQ-NLL}} \log \mathbf{p}(\mathbf{y}|\mathbf{x}) - \alpha_{\text{SEQ-KD}} \log \mathbf{p}(\mathbf{\hat{x}}|\mathbf{x}) + \alpha_{\text{WORD-KD}} \mathbf{D}_{\text{KL}}(\mathbf{q}||\mathbf{p})$$

Pipeline

• Set-up: Use [0.34, 0.66] mixing probabilities and temperature of 1.0

• Same	German -> English					
1x1 wide	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
$\mathcal{L}_{ ext{KD}} - \emptyset$					31.6	
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$	38.5		31.5		33.6	
3x3 slim	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
$\mathcal{L}_{ ext{KD}} = \emptyset$						
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$		38.2				
3x3 wide	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
Baseline					29.6	
$\mathcal{L}_{ ext{KD}} - \emptyset$			35.3		37.9	
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$	42.9	45.2	35.4	33.9	37.8	153.0M/3.0
24x6 wide	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio

- Background & Motivation
- Hinton-style Distillation
 - ModelPT Distillation
- DistilBERT-style Distillation
- Sequence-Level Distillation
 - Greedy-search and beam-search sampling
- Hybrid Distillation
- Distillation in the Low Data Regime
- NMT Distillation Recommendations
- Future Work

ENTER THE LOW DATA REGIME

Goal: training on only 5% of ground truth labels and pseudo-labels

- Hinton et al. 2015 "Soft targets allow student to generalize well from only 3% of the training set"
- Approach Hybrid distillation with 5% of ground and pseudo labels (mixture 1:2) at temperature 1

Low Data Regime

Low Data Regime

1x1 wide	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
$\mathcal{L}_{ ext{KD}} - \emptyset$		39.4				
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$						
3x3 slim	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
$\mathcal{L}_{ ext{KD}} - \emptyset$		37.8				
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$						
3x3 wide	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
Baseline		36.9				
$\mathcal{L}_{ ext{KD}} - \emptyset$		44.4				
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$	40.7	43.4	33.5	32.1	36	153.0M/3.0
24x6 wide	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
Baseline		47.1				

Low Data Regime Relative Changes

1x1 wide	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
$\mathcal{L}_{ ext{KD}} - \emptyset$	-0.8					
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$	-1.0	-1.1	-1.0	-0.8	-1.5	95M/5.0
3x3 slim	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
$\mathcal{L}_{ ext{KD}} - \emptyset$						
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$						
3x3 wide	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio
$\mathcal{L}_{ ext{KD}} - \emptyset$	-0.9				-1.2	
$\mathcal{L}_{ ext{KD}} - \mathcal{L}_{ ext{NLL}}$	-2.2	-1.8	-1.9	-1.8	-1.8	153.0M/3.0
3x3 wide	WMT13	WMT14	WMT18	WMT19	WMT20	Params./Compression ratio

- Background & Motivation
- Hinton-style Distillation
 - ModelPT Distillation
- DistilBERT-style Distillation
- Sequence-Level Distillation
 - Greedy-search and beam-search sampling
- Hybrid Distillation
- Distillation in the Low Data Regime
- NMT Distillation Recommendations
- Future Work

NMT DISTILLATION RECOMMENDATIONS

How to proceed

- How many parameters? In general, students with "reasonably-many" parameters ~90M (e.g. 1x1 wide) tend to exhibit desirable boosts; on the other hand, e.g. for 3x3 slim, with only ~20M, it's hard to learn from the teacher.
- **DistilBERT doesn't help** With many ablation studies, it seems that initialization hurts performance for NMT & the DistilBERT setup significantly constrains the problem space.
- **Hinton [distillation] is not all you need** If you want performance boosts >1-2 BLEU points, some form of semi-supervised distillation, sequence-level distillation, or interpolation is necessary (e.g. "hybrid distillation").
- Use less data You can possibly get away with far less data than you might think. We used only 5% of all available labels + pseudo-labels and saw similar performance with hybrid distillation.

- Background & Motivation
- Hinton-style Distillation
 - ModelPT Distillation
- DistilBERT-style Distillation
- Sequence-Level Distillation
 - Greedy-search and beam-search sampling
- Hybrid Distillation
- Distillation in the Low Data Regime
- NMT Distillation Recommendations
- Future Work

FUTURE WORK On noisy students and unlabeled data

- We plan on running inference baselines to get a better idea of model efficiency.
- Semi-supervised distillation: with little labeled data and sizable unlabeled data.
- Use ideas from Self-training with Noisy Student [Xie et al., 2019] or Well-Read Students Learn Better [Chang et al., 2019] like pre-training students.

REFERENCES

- Distilling the Knowledge in a Neural Network [Hinton et al. 2015]
- Sequence-Level Knowledge Distillation [Kim et al., 2016]
- DistilBERT, a distilled version of BERT [Chaumond et al., 2019]
- Self-training with Noisy Student improves ImageNet Classification [Xie et al., 2019]
- Well-Read Students Learn Better [Chang et al., 2020]
- Achieving Human Parity on Automatic Chinese to English News Translation [Hassan et al., 2018]
- Big Self-Supervised Models are Strong Semi-Supervised Learners [Chen et al., 2020]
- When Does Label Smoothing Help? [Mueller et al., 2019]
- Softmax Tempering for Training Neural Machine Translation Models [Dabre & Fujita, 2020]

THANK YOU!

Questions?