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Abstract

We distill the ESM-1b protein language model into a family of smaller Transformer models. ESM-1b is
a high-capacity 669M parameter model that captures rich biological information from sequences [1]. We
construct nine student models of varying sizes, from 1M to 33M parameters, and train them with and
without knowledge distillation. The distilled models are optimized to mimic the teacher’s output distribution,
in addition to learning from true labels. We evaluate all models on Pfam and structural superfamily SCOPe
classification tasks using k-nearest-neighbor classifiers in embedding space, reporting accuracy, precision,
recall, and F1 for each model. Our results show that larger models achieve lower perplexity and better
classification metrics. While distillation does not have a significant effect on reducing perplexity, we find
it noticeably improves protein annotation classification over vanilla training. We also find distillation to be
useful for low-capacity student models in data-scarce regimes.

1 Introduction

Protein language models (PLMs) have emerged as powerful tools for extracting evolutionary and structural information from
sequences [1]. Meta AI's ESM-1b model is a 669M-parameter Transformer trained on 250M protein sequences from UniParc
[2], and its learned representations encode biochemical properties, secondary/tertiary structure, and evolutionary homology [1].
These contextual embeddings cluster residues by chemical property and capture family relationships, leading to state-of-the-art
predictions of mutational effects and contacts [1]. However, such large models are expensive to deploy.

Knowledge distillation provides a strategy to compress a high-capacity model into a smaller, student model by training it to
mimic the teacher’s logits [3] [4]. In NLP, distilled models like DistilBERT (40% smaller) retain ~97% of BERT’s capabilities
while being 40% smaller and 60% faster [4]. Recent work has begun applying distillation to PLMs (e.g., ProtGPT2 [5],
ProtBERT [6] variants), but systematic studies of Transformer distillation for proteins are limited. We aim to fill this gap by
distilling ESM-1b into student Transformers of three sizes. ESM-1b was pre-trained on UniRef50, a clustering of UniParc at
50% sequence identity [1] dataset with approximately 30 million proteins. We train on a 50k subset of the UniRef50 using both
the standard cross-entropy loss and a soft-target distillation loss [3].

2 Methods

The teacher model is ESM-1b (669M parameters) with 34 Transformer encoder layers, 1280 hidden dimension, 5120 interme-
diate MLP dimension, and 20 attention heads [1]. We derive 12 student models of a smaller size. Table 1 lists the number of
parameters for each model. We broadly categorize them by size:

¢ Teacher (669M parameters): 33 layers, 1280 hidden dimension, 5120 intermediate dimension, 20 attention heads.

» Large student (33.7M parameters): 28 layers, 384 hidden dimension, 256 intermediate dimension, and 6 attention
heads.

¢ Medium student (5.6M parameters): 10 layers, 256 hidden dimension, 512 intermediate dimension, and 4 attention
heads.

* Small student (1.2M parameters): 8 layers, 128 hidden dimension, 768 intermediate dimension, and 2 attention heads.

All models use the same vocabulary and masked language modeling (MLM) objective as ESM-1b. We curated a dataset
of 50k UniRef50 protein sequences with Pfam and superfamily SCOPe annotations, and used a 80-10-10 train-val-test split.
We compare two training regimes: (1) vanilla training with true-token cross-entropy loss, and (2) distillation training. For
distillation, we use the ESM-1b teacher to produce soft logits on each masked token. We match the student’s softmax output
(at temperature T') to the teacher’s soft targets via a KL divergence term, in addition to the cross-entropy loss. This transfers
the teacher’s “dark knowledge”, i.e. relative probabilities of wrong tokens, to the student [3]. Student models use the same
BERT-style Transformer architecture as ESM-1b. Training was done on a Lambda cloud GH200 Superchip for 10, 20, and 30
epochs for small, medium, and large models, respectively. We did a sweep over T' = 0.5, 1.0, 2.0 for all models. Running all
17 model variants took ~36 hours.
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Masked Language Modeling Objective. The ESM-1b model is trained using the masked language modeling (MLM) objec-
tive, adapted from BERT [6] and applied to protein sequences. Given a protein sequence © = (x1, X2, ..., &), where each x;
is an amino acid token from a vocabulary of size |V|, we randomly select a subset M C {1,...,T} corresponding to 15% of
positions to serve as prediction targets.

For each ¢ € M, the input token z; is corrupted as follows:

* 80% of the time, z; is replaced with a special [MASK] token,
* 10% of the time, x; is replaced with a random token from V' \ {z;},
* 10% of the time, x; is left unchanged.

Let = denote the corrupted sequence. The model processes & and outputs a distribution over the vocabulary at each position.
For each masked position i € M, the model produces logits z; € RIV!, which are transformed via a softmax:

po(x; | &) = softmax(z;) € RV,

The MLM loss is the average cross-entropy between the predicted and true tokens over all masked positions:

Lyim = —Egox Epm lz log po(; | i")] .
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Each prediction is made over the full vocabulary of size |V| = 33 (including the 20 standard amino acids and special tokens).
We evaluate model uncertainty using exponentiated cross-entropy or perplexity, defined as:

1 -
PPL = exp (./\/l| Z —log po(x; | l)) .
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A PPL of 1 corresponds to perfect prediction, while an PPL near || reflects uniform uncertainty. This formulation encourages
the model to learn contextual dependencies between amino acids and capture structural signals from sequence data alone.

3 Distillation

Objective. For each i € M, let zfﬁ, z§’> € RIVI denote the logits from the student and teacher models, respectively, and let

Q= {0, 1}|V| be the one-hot vector corresponding to the true amino acid token at position <. The student softmax probabilities
at each position are given by:

¥ = softmax(z("), pgi) = softmax(z,gi)).

The masked cross-entropy loss over the true tokens is:
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For distillation, we soften both distributions using a temperature parameter 7":
pT) = softmax(z(V/T), pgi’T) = softmax(zt(i)/T).

The distillation loss is the average KL divergence between the teacher and student distributions at the masked positions:
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The total loss is a weighted sum of the two components:
L=(1- /\)Ec]z +AT? Lxp,

where A € [0, 1] balances the contribution of the distillation signal. Following [3], we include the 72 scaling factor to match
the magnitude of gradients.

Training setup. In all distillation experiments, we set A = 0.5 so that both losses contribute equally. For vanilla training
(without distillation), we set A = 0, reducing the loss to standard masked cross-entropy. We use the AdamW optimizer with an
initial learning rate of 10~3, and batch sizes 512, 128, 64 for small, medium, and large models, respectively. During distillation,
the teacher ESM-1b weights are frozen to provide logits for the KD loss; the student is updated via backprop on the combined
loss.



4 Experiments and Results

Table 1 lists train and test set perplexities (PPLs) for all 17 model variants. The n-gram baselines are the worst-performing, with
the best 4-gram achieving test PPL of 17.76. The student models perform considerably better, with the best 1.2M parameter
student model having a test PPL of 14.21. The 33.7M parameter model achieves the lowest test PPL of 13.30 across all
model variants and represents a 19.3x compression of ESM-1b, with a ATest PPL of +8.60. We find that while distillation
helps for the 1.2M and 33.7M parameter models, the difference in performance to the vanilla student models is incremental,
with the 5.6M parameter vanilla model outperforming its distilled versions. We hypothesize that the true benefit of distillation
emerges in data-scarce regimes, where the teacher’s soft targets provide richer supervision than the raw labels alone. In
our case, the 50k training set may already provide sufficient signal for effective student generalization, especially for larger
models. Furthermore, we observe that higher temperatures (1" > 1.0), which induce smoother teacher distributions, tend to
yield lower student perplexities, suggesting that softened targets can help prevent overfitting by encouraging better calibration
and generalization.

Model Params (M) Compression Rate (x)  Train PP Test PPL ATest PPL
ESM-1b 669.2 1.0 4.64 4.70 0.00
2-gram 0.0005 1.3M 18.08 18.08 13.38
3-gram 0.01 69708.3 17.91 17.95 13.25
4-gram 0.17 3891.9 17.53 17.76 13.06
8-gram 15.2 44.01 11.46 20.90 16.20
Student-h128-L8-VANILLA 1.2 557.7 14.18 14.22 9.52
Student-h128-L8-T0.5 1.2 557.7 14.26 14.30 9.60
Student-h128-L8-T1.0 1.2 557.7 14.22 14.21 9.51
Student-h128-L8-T2.0 1.2 557.7 14.73 14.73 10.03
Student-h256-L10-VANILLA 5.6 119.5 13.44 13.49 8.79
Student-h256-L10-T0.5 5.6 119.5 13.47 13.50 8.80
Student-h256-L10-T1.0 5.6 119.5 13.50 13.51 8.81
Student-h256-L10-T2.0 5.6 119.5 13.74 13.66 8.96
Student-h384-L28-VANILLA 33.7 19.9 13.41 13.47 8.77
Student-h384-1.28-T0.5 33.7 19.9 13.37 13.46 8.76
Student-h384-L28-T1.0 33.7 19.9 13.36 13.39 8.69
Student-h384-1.28-T2.0 33.7 19.9 13.16 13.30 8.60

Table 1: Final train and test perplexities for all models, grouped by parameter count. Distilled models are trained with different
temperatures. Compression is relative to the 669M parameter ESM-1b baseline. ATest PPL indicates how much worse the
model performs compared to ESM-1b.

4.1 Representation Evaluation

We perform a t-SNE clustering of the model’s protein sequence representations to see if the student’s embedding space clusters
sequences by family, similar to ESM-1b. We prepend protein sequences with a special [CLS] token. Thus, we obtain the model’s
[CLS] token representation for each protein and use it to perform the t-SNE. The plots in Figure 1 show a 2D visualization
of protein embeddings colored by their labels, i.e. Pfam or Superfamily, restricted to the top 10 most common label classes.
Each point represents a protein, and the spatial grouping reflects how well the model clusters proteins with the same label in
embedding space: tight, separated clusters suggest good semantic separation by the model. We show the t-SNE plots for ESM-
1b, Student-h384-L8-VANILLA and Student-h384-L8-2.0 for both Pfam and Superfamily. Qualitatively, the distilled model’s
t-SNE protein representation clusters are more discernible/spread out relative to the teacher model.

Pfam is a well-known database of protein families defined by hidden Markov models [7], while structural superfamilies (as
in the SCOPe database) group proteins by fold similarity [8]. Following ESM-1b [1], we use k-nearest neighbors (kNN)
classification in embedding space: given a model’s sequence embedding, we assign Pfam/Superfamily by majority vote among
the nearest neighbors in a labeled training set. We extract each model’s [CLS] embedding and perform k-NN classification
on labeled test data. Tables 2 and 3 report accuracy, precision, recall and F1 (micro-averaged) for each of the 17 models on
the Pfam and SCOPe Superfamily tasks, respectively. For the Pfam task, ESM-1b achieves the highest classification metrics.
However, the 28-layer student model, distilled with a temperature of 7' = 2.0 only differs marginally. We see that distillation
often yields improvements in classification metrics for all models. Notably, the distilled 28-layer student model achieves a +9%
boost in accuracy, precision, and recall and a +10% boost in F1.

On the SCOPe superfamily classification task, the distilled 28-layer student model with temperature 7" = 2.0 beats all model
variants, including the teacher. As before, there is a noticeable increase in classification metrics when distilling the 28-layer
model with ESM-1b. Our analysis leads to a particularly noteworthy finding: while distillation doesn’t noticeably drive down
perplexity for the large 33.7M parameter 28-layer student model, it substantially improves downstream protein annotation
(Pfam/Supfam) classification, which it has not been explicitly trained to do.
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Figure 1: t-SNE plots of CLS token embeddings for Pfam (top row) and Superfamily (bottom row) labels. Each column
corresponds to a different model: Student-h384-L8-VANILLA (left), Student-h384-L8-T=2.0 (middle), and ESM-1b (right).
Each point represents a protein, colored by its label.

Model Accuracy  Precision  Recall F1 Model Accuracy  Precision  Recall F1
ESM-1b 0.80 0.81 0.80  0.80 ESM-1b 0.68 0.70 0.68  0.67
Student-h128-L8-VANILLA 0.75 0.75 075 073 Student-h128-L8-VANILLA 0.58 0.59 059 0.8
Student-h128-L8-T0.5 0.76 0.75 076 074 Student-h128-L8-T0.5 055 0.57 055  0.55
Student-h128-L8-T1.0 0.72 0.70 072 070 Student-h128-L8-T1.0 0.54 0.54 054 053
Student-h128-L8-T2.0 032 031 032 031 Student-h128-L8-T2.0 032 032 032 030
Student-h256-L10-VANILLA 0.73 0.71 073 071 Student-h256-L10-VANILLA 0.59 0.57 059  0.58
Student-h256-L10-T0.5 0.72 0.73 072 071 Student-h256-L10-T0.5 0.54 0.57 058  0.53
Student-h256-L10-T1.0 0.69 0.68 069  0.66 Student-h256-L10-T1.0 053 0.54 053 053
Student-h256-L10-T2.0 0.66 0.64 066 031 Student-h256-L10-T2.0 0.54 0.54 054 053
Student-h384-L28-VANILLA 0.70 0.71 070  0.69 Student-h384-L28-VANILLA 0.58 057 058 057
Student-h384-L28-T0.5 0.72 0.72 072 0.0 Student-h384-L28-T0.5 0.58 0.58 058 057
Student-h384-L28-T1.0 0.70 0.68 0.70  0.68 Student-h384-L28-T1.0 0.59 0.58 059  0.58
Student-h384-L28-T2.0 0.79 0.80 079 079 Student-h384-L28-T2.0 0.72 0.71 072 071
Table 2: Pfam classification performance. Table 3: Superfamily classification performance.

4.2 The Data-Scarce Regime

To test our hypothesis that knowledge distillation is particularly useful in the low data regime, we restrict ourselves to 1k
training examples, 1k validation examples, and 1k test examples. Table 4 in Appendix A shows the train and test perplexities
for all models. The 5.6M parameter model distilled with temperature 7' = 1.0 achieves a considerable reduction of -3.03 test
PPL over its vanilla counterpart. For downstream k-NN protein annotation classification, we see a corresponding increase in
F1 from 0.54 to 0.69 for Pfam and an increase from 0.50 to 0.57 for Superfamily. We also observe a -0.22 decrease in test
PPL for the T' = 1.0 distilled 1.2M parameter model over the vanilla baseline. For the 33.7M parameter models, it appears the
perplexity is saturated and, hence, there is no benefit from distillation.

5 Conclusion

We show that ESM-1b can be effectively distilled into compact protein language models with up to 33.7M parameters, achiev-
ing strong language modeling performance and, in some cases, improved downstream protein annotation classification. While
perplexity gains from distillation are modest, we find significant improvements in Pfam and SCOPe annotation tasks, especially
for the largest student. Notably, the distilled 28-layer student outperforms the teacher in structural classification, despite being
20x smaller. This suggests that distillation not only compresses models, but can enhance biologically meaningful representa-
tions. We also find that in data scarce and low-capacity student model regimes, distillation can lead to a significant reduction in
PPL.
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6 Appendix A

Table 4 shows the train and test perplexities for all models in the data-scarce regime of 1k training examples. The best-in-class
model variant is the 28-layer 33.7M parameter vanilla student model. The 5.6M parameter model distilled with temperature
T = 1.0 achieves a considerable reduction of -3.03 test PPL over its vanilla counterpart. We see a -0.22 decrease in test PPL
for the 7' = 1.0 distilled 1.2M parameter model over the vanilla baseline. For the 33.7M parameter models, it appears the
perplexity is saturated and, hence, there is no benefit from distillation.

Model Params (M) Compression Rate Train PPL Test PPL ATest PPL
ESM-1b 669.2 1.0 1.30 1.30 0.00
Student-h128-L8-VANILLA 1.2 557.7 19.63 19.65 18.35
Student-h128-L8-T0.5 1.2 557.7 19.44 19.48 18.18
Student-h128-L8-T1.0 1.2 557.7 19.46 19.43 18.13
Student-h128-L8-T2.0 1.2 557.7 19.60 19.59 18.29
Student-h256-L10-VANILLA 5.6 119.5 17.53 17.55 16.25
Student-h256-L.10-T0.5 5.6 119.5 14.52 14.54 13.24
Student-h256-L10-T1.0 5.6 119.5 14.47 14.52 13.22
Student-h256-L.10-T2.0 5.6 119.5 17.44 17.48 16.18
Student-h384-L.28-VANILLA 33.7 19.9 14.41 14.31 13.01
Student-h384-1.28-T0.5 33.7 19.9 14.57 14.57 13.27
Student-h384-L.28-T1.0 33.7 19.9 14.54 14.59 13.29
Student-h384-1.28-T2.0 33.7 19.9 16.62 16.61 15.31

Table 4: Train and test perplexities for all models, grouped by parameter count. ATest PPL is the increase in perplexity relative
to ESM-1b’s test PPL of 1.30.

Tables 5 and 6 show the metrics in the data-scarce regime for Pfam and SCOPe superfamily annotation classification, respec-
tively.



Model Accuracy  Precision  Recall F1
ESM-1b 0.97 0.97 097  0.97
Student-h128-L8-VANILLA 0.57 0.61 057 0.56
Student-h128-L8-T0.5 0.66 0.66 0.66  0.65
Student-h128-L8-T1.0 0.57 0.63 0.57  0.57
Student-h128-L8-T2.0 0.67 0.69 0.67  0.67
Student-h256-L10-VANILLA 0.55 0.57 055  0.54
Student-h256-L10-T0.5 0.69 0.71 0.69  0.69
Student-h256-L10-T1.0 0.66 0.66 0.66  0.65
Student-h256-L10-T2.0 0.42 0.39 042 040
Student-h384-L28-VANILLA 0.72 0.72 072 0.71
Student-h384-L28-T0.5 0.65 0.64 0.65 0.64
Student-h384-L28-T1.0 0.54 0.54 054 0.3
Student-h384-L.28-T2.0 0.46 0.48 046 046

Table 5: Pfam classification performance.

Model Accuracy  Precision  Recall F1
ESM-1b 0.94 0.95 094 0.94
Student-h128-L8-VANILLA 0.55 0.55 055 0.54
Student-h128-L8-T0.5 0.53 0.53 053  0.52
Student-h128-L8-T1.0 0.53 0.53 0.53 051
Student-h128-L8-T2.0 0.59 0.60 059  0.59
Student-h256-L10-VANILLA 0.51 0.52 0.51  0.50
Student-h256-L10-T0.5 0.58 0.58 0.58  0.57
Student-h256-L10-T1.0 0.58 0.58 0.58  0.57
Student-h256-L10-T2.0 0.35 0.35 035 034
Student-h384-L28-VANILLA 0.60 0.60 0.60 0.59
Student-h384-L28-T0.5 0.55 0.55 054  0.54
Student-h384-L28-T1.0 0.47 0.44 047 045
Student-h384-L.28-T2.0 0.42 0.42 042 041

Table 6: Superfamily classification performance.



