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NMT MODEL ARCHITECTURE

Models P(Y|X) with source sentence x = [x;, ... ,X|s|] and target sentence y = |y1,..., Y]
Encoder: transforms x into continuous representations (e.g. Bi-drectional RNN, Transformer)

Decoder: predict conditional distribution of each target word using beam search, conditioned on
encoding

Machine translation seeks to solve:

argmaxyrp(y|x)



NMT MODEL ARCHITECTURE

Minimize NLL on parallel training set of N sentences [Hassan et al. 2018]:

N
Lxin(0) = — Zlog}?(y(n)|x(n)§ 0)
n=1

N |T]
= =3 logp(y ™y % by, Att(Enc(x™), y, h™,); 6)

n=1 t=1



MOTIVATING DISTILLATION FOR NMT
The Al scaling law for LLMs
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GOAL: Minimize neural machine translation model size while maintaining accuracy
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KNOWLEDGE DISTILLATION [HINTON ET AL. 2015]

Train small student network to learn from larger teacher network.
Hinton et al. 2015 matches the student and teacher predictions via cross-entropy.

For a classifier over ) classes, minimize NLL (cross-entropy):

N |V

Lnp(0 Z Z IL{J(H} = k}logp(y (n) — = kl|x;0)

N n=1k=1
between degenerate one-hot encoded data distribution (all mass in one class) and model distribution p(y|z;0)



KNOWLEDGE DISTILLATION [HINTON ET AL. 2015]

Train student classifier on the soft-labels of the teacher classifier rather than ground-truth labels
Trained teacher classifier assigns probabilities to all labels
“Relative probabilities of incorrect answers tell us a lot about how the [teacher] model tends to generalize”

With learned teacher distribution q(ylw; 9T) , minimize cross entropy with teacher distribution on transfer
set:

N
1
Lxp(0;0r) = —— ; q(y"™ = k[a™; 67)log p(y™ = k|z™; 6)
. . ~exp(z) o o exp(wy)
where @ = q(y = klz;07) = —5; and pr = py = klz;0) = —;

> iy exp(z;) zj:l exp(w,)



KNOWLEDGE DISTILLATION [HINTON ET AL. 2015]

Tempering distributions

Compute the soft labels by using a tempered softmax (e.g. for student):

_ exp(wg/T)
SV exp(w;/7)

(P" )k

Taken from Distilling Knowledge in Neural Networks Blog [Sayak Paul]



KNOWLEDGE DISTILLATION [HINTON ET AL. 2015]

Interpolate between NLL and KD with mixing hyper-parameter v :

L(0;07) = (1 — ) Lnrr(0) + aLyn(0; 07)

where ﬁKD — Od[:CE(qT, pT) + (1 — @)ECE(pT; Ytrue)



KNOWLEDGE DISTILLATION [HINTON ET AL. 2015]

If temperature is high compared to the logits:

OLce 1 ( exp(we/7)  exp(a/7) )

owe T\ XM exp(uwp/r) XV exp(zi/7)
Nl( 1+ wy /7 B 1+ 2z /7T )
T N-|-Z£)__|1wk/’r N-I—ZQ}:'le/T

If logits are zero-meaned for each example in transfer set:

O0Lck 1
8’wk B NTQ (wk B 2k)




KNOWLEDGE DISTILLATION FOR NMT

With the tempered teacher distribution ¢(y|x;07), minimize cross entropy with tempered student
distribution:

N [T VI
LWORD-LEVEL = —— Z Z Z q\Yy = = ’f\X(n), Yt ) log P(y = k|x™, y(<t))

nltlkl

Interpolate between NLL and Word-level KD with mixing hyper-parameter (v :

L(0;0r) = (1 — a)LnL(0) + aLworp-LevEL(0; 07)



KNOWLEDGE DISTILLATION FOR NMT

Measure of how far distribution p is from q:

plx p(x)
Dxv(pllg) := Eanp [log ] ZP log

CE 513
reX

In terms of cross entropy:

Dxv(pllg) = ) p(x)logp(z) — Y p(x)logg(x) = —H(p) + H(p, q)

reX reX

where entropy is fixed for the training dataset.



KNOWLEDGE DISTILLATION [HINTON ET AL. 2015]

Interpolate between NLL and KL divergence KDL.:

L(0;07) = (1 — ) Lnrr(0) + aLyn (0; 07)

where [:KD — DKL(qTHpT)



TRAINING SETUP

Datasets and hyperparameters

Training set - WMT21 DE->EN (same as transfer set in this part)

Validation sets - WMT{13, 14, 18, 19, 20} DE->EN

Teacher architecture - 24x4 encoder-decoder, attention_heads=16, hidden_size=1024, inner_sizer=4096
Student architectures

Slim architectures - 1x1 and 3x3 encoder-decoder, attention_heads=4, hidden_size=256, inner_size=1024

Wide architectures - 1x1 and 3x4 encoder-decoder, attention_heads=16, hidden_size=1024, inner_size=4096
Temperature - Perform grid search over T=[0.5, 1.0, 2.0, 5.0, 10.0]
Label smoothing - Not recommended [Muller et al., 2019]

Optimizer - Adam optimizer w/ inverse square root annealing schedule, lr=4e-4,
warm_up_steps=1.5e4, steps=1.5e5



HINTON DISTILLATION FOR NMT

WMT{13,14,18,19,20} German -> English

sacreBLEU 45.4 47.1 37.1 34.4 40.1

Params. 468 M 468 M 468 M 468 M 468 M



HINTON DISTILLATION FOR NMT

1x1 Student Results

WMT20 German -> English

Slim 1x1 Temp=0.5 Temp=1.0 Temp=2.0 Temp=5.0 Temp=10.0 Params./Compression

Lxp — 0 25.3 24.1 19.3 8.9 6.2 18.9M/24.7

Wide 1x1 Temp=0.5 Temp=1.0 Temp=2.0 Temp=5.0 Temp=10.0 Params./Compression




HINTON DISTILLATION FOR NMT

3x3 Student Results

WMT20 German -> English
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Disclaimer: PR in the works

HOW TO USE?

DistillationModelPT

Distillation Config

Primary

distillation Cosine embedding

ModelPT.nemo ——
ModelPT

from r e .distillation im YistillationM ) I=El)
def forward(self, src, src_mask, tgt, tgt_mask):
src_hiddens = self.encoder(input_ids=src, encoder_mask=src_mask)

@hydra_runner(config path="conf", config_name="aayn_base distill"™) tgt_hiddens = self.decoder(

main(c-Fe' MTEnc . N input_ids=tgt, decoder_mask=tgt_mask, encoder_embeddings=src_hiddens, encoder_mask=src_mask

S . . )

# training is managed by PyTorch Lightning
trainer = Trainer(**cfg.trainer)
if self.is being distilled():

self.log softmax.log softmax = Fals
N temperature = self.distill cfg.get(’ ature', 1.8)
if cfg.model.preproc out dir is not None: logits = self.log softmax(hidden states=tgt hiddens)

MTData (cfg=cfg.model, trainer=trainer) temp_logits = logits / temperature

# tokenizers will be trained and and tarred training data will be created if needed

temp_log_probs = F.log_softmax(temp_logits, dim=-1)

# experiment logs, checkpoints, and auto-resume are managed by exp manager and PyTorch Lightning

e)(p_managel‘(‘t r‘aine[‘, C‘Fg_ exp_manager } self.distillation_registration_step(log_prob=temp_log_probs)
del temp log probs

teacher student model = Distillati delPT(cfg=cfg.model, trainer=trainer) self.log softmax.log softmax

if c:fg i dD_training: log probs = self.log softmax(hidden_ states=tgt hiddens)

trainer.fit(teacher student model) return log_probs
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DISTILBERT-STYLE DISTILLATION FOR NMT

Initialization: instantiate student encoder-decoder by sampling 1 of every n layers from teacher
encoder-decoder layers

E.g. 24x6 teacher->3x3 student: sample 1 every 8 from encoder & 1 every 2 from decoder

Triple loss linear combination:

L = axpLxkp + anLLLNLL + QcosLeos
h, - h
[|hg]|[hg]|

where L. (hg,hy) =1 —



DISTILBERT-STYLE DISTILLATION FOR NMT

Teacher: 32.7 sacreBLEU | Student: 1x1 Wide DE->EN, 95M params.

@ _ ENLL — Ecos
L:KD - @ — Ecos

[-:KD — [:NLL — @

EKD — £NLL — Ecos

@ — ENLL — ﬁcos
EKD — @ — Lcos

LKD — [:NLL — @

EKD — ENLL - ['cos

324
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SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016]

Sequence level distribution:
U

plyx) = [ [ p(yslx, y<t)

Using the teacher sequence distribution ¢(y|x) over all possible sequences:

LSBEQKD = — Z q(y|x)log p(y|x)

yeT
Due to the exponential number of terms, approximate with mode:

q(y|x) ~ Wy = argmax, crq(y|x)}



SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016]

Greedy-search sampling - We can greedily sample the sequence of words
While cheap, from experiments, it is not as effective as beam search
Beam-search sampling (K=1) - Run beam search with teacher model to obtain prediction j& (expensive!)
Why? - Large portion of teacher’s distribution mass q lies in single output sequence
Step 1: Train teacher model
Step 2: Run beam search over training set with teacher to get "pseudo-label” dataset

Step 3: Train the student network with cross entropy on new dataset



SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016]

Train student model as mixture of sequence level teacher-generated dataset and original training dataset:

L=—(1—a)lspgnLL + @LSEQKD

= —(1—a)logp(y|x) — @ Y _q(y[x)log p(y|x)
yeT
Approximate second objective with beam search:

Lspqkp & — Z I{y ="y} logp(y|x)
yeT
= —logp(y =Yy|x)
View interpolation as a form of regularization due to noisy data augmentation



SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016]
Three variants

Ground Truth

Ground Truth ‘ Beam Beam
E C D ACEF | ACE E C D
1 O fill A C F ‘ [ IEI |
o ! L ; . I:l
: N | e/ ME R
o . ., — | R B EiC E ¥ i ol i ECE E C E
< W 3 il Yy B &K T ' L Cl
H o = _{H}_.| : U u EFEC L Ak I R, EFEC
Dohf ‘ \ i Teacher Network . D D D Teacher Network n
D D [:] - ' Student Network HH ;

Teacher Netw_ork Student Network | | OO » ‘7 : D D D

7 L
Student Network
Word-Level Knowledge Distillation Sequence-Level Knowledge Distillation Sequence-Level Interpolation



SEQUENCE-LEVEL KNOWLEDGE DISTILLATION [KIM & RUSH, 2016]

WMT20 German -> English

Temperature - 1
1x1 wide student baseline - 32.7 sacreBLEU
3x3 slim student baseline - 29.6 sacreBLEU

0.1 0.9 33.1 0.1 0.9 30.6
0.34 0.66 324 0.34 0.66 30.4
0.66 0.34 33.2 0.66 0.34 30.3

0.9 0.1 32.9 0.9 0.1 294
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HYBRID DISTILLATION

A hybrid of sequence-level interpolation and Hinton-style knowledge
distillation

Apply a hybrid of the two knowledge distillations:
L = aspq-NLLLSEQNLL + asEQ-KDLSEQ-KD + AwoRD-KDLWORD-KD

~ —aspqNLL 1og P(Y]X) — aseq-xD Z q(y|x) log p(y|x) + aworp-kpDkw(d||p)
YET

Using the mode approximation:

L = —asgqnNLL log P(¥Y|X) — aspo-kp log p(X|x) + aworp-kpDxkr(q||p)



HYBRID DISTILLATION

Pipeline

Parallel data
(German-English)

Student
v

€ Augmented
(noisy) parallel data
Word-level NLL

(German-English)

Word-level Distillation
(on augmented transfer dataset)

Teacher
Teacher-generated
T —»  parallel data (German-
English)

A
1
1
1
1
1
1
1

Monolingual data
(German)



HYBRID DISTILLATION

Set-up: Use [0.34, 0.66] mixing probabilities and temperature of 1.0

Same training & transfer datasets + new (noisy) teacher-generated dataset German -> English

[’KD_@

EKD - ['NLL

EKD_m

EKD - ENLL

[’KD_@

EKD - L"NLL
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ENTER THE LOW DATA REGIME

Hinton et al. 2015 - "Soft targets allow student to generalize well from
only 3% of the training set”

Approach - Hybrid distillation with 5% of ground and pseudo labels
(mixture 1:2) at temperature 1



HYBRID DISTILLATION

Low Data Regime

Small parallel data
(German-English)

Student
v
o] Augmented
(noisy) parallel data
Word-level NLL (German-English)

Word-level Distillation
(on augmented transfer dataset)

Teacher
Teacher-generated
T —»  parallel data (German-
English)

A
1
1
1
1
1
1
1

Small/large
monolingual data

(German)



HYBRID DISTILLATION
Low Data Regime

1x1 wide Params./Compression ratio

Baseline : 5 ] ] i 95M/5.0

95M/5.0

95M/5.0

3x3 slim Params./Compression ratio

Baseline ; b b : ] 21.9M/21.3

21.9M/21.3

21.9M/21.3

3x3 wide Params./Compression ratio

Baseline 5 ) b . ] 153.0M/3.0

153.0M/3.0

153.0M/3.0

24x6 wide Params./Compression ratio

Baseline




HYBRID DISTILLATION
Low Data Regime Relative Changes

95M/5 0
—“
I TR T

21.9M/21.3

21.9M/21.3

153.0M/3.0

WMT13 WMT18 WMT19 WMT20 Params./Compression ratio

WMT13 WMT18 WMT19 WMT20 Params./Compression ratio
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NMT DISTILLATION RECOMMENDATIONS

How many parameters? - In general, students with "reasonably-many” parameters ~90M (e.g. 1x1 wide) tend
to exhibit desirable boosts; on the other hand, e.g. for 3x3 slim, with only ~20M, it's hard to learn from the
teacher.

DistilBERT doesn't help - With many ablation studies, it seems that initialization hurts performance for NMT
& the DistilBERT setup significantly constrains the problem space.

Hinton [distillation] is not all you need - If you want performance boosts >1-2 BLEU points, some form of
semi-supervised distillation, sequence-level distillation, or interpolation is necessary (e.g. "hybrid
distillation™).

Use less data - You can possibly get away with far less data than you might think. We used only 5% of all
available labels + pseudo-labels and saw similar performance with hybrid distillation.
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FUTURE WORK

We plan on running inference baselines to get a better idea of model efficiency.

Semi-supervised distillation: with little labeled data and sizable unlabeled data.

Use ideas from Self-training with Noisy Student [Xie et al., 2019] or Well-Read Students Learn Better [Chang
et al., 2019] like pre-training students.



Distilling the Knowledge in a Neural Network [Hinton et al. 2015]

Sequence-Level Knowledge Distillation [Kim et al., 2016]

DistilBERT, a distilled version of BERT [Chaumond et al., 2019]

Self-training with Noisy Student improves ImageNet Classification [Xie et al., 2019]

Well-Read Students Learn Better [Chang et al., 2020]

Achieving Human Parity on Automatic Chinese to English News Translation [Hassan et al., 2018]
Big Self-Supervised Models are Strong Semi-Supervised Learners [Chen et al., 2020]

When Does Label Smoothing Help? [Mueller et al., 2019]

Softmax Tempering for Training Neural Machine Translation Models [Dabre & Fujita, 2020]



THANK YOU!



