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Abstract

We compute the evolution of the Ricci scalar curvature of a Lambda-Cold Dark Matter
universe in the late epoch. The Friedmann–Lemaitre–Robertson–Walker metric, from which
the Friedmann equations are derived, assumes a foliation of spacetime M as R×Σ where Σ is a
spatial three-manifold. We hence determine the equations of motion for non-minimally coupled
inflation of a universe M = R×Σ with a spatial three-manifold Σ of constant positive curvature
whose density parameter is dominated by dark energy Λ.

1 Introduction

The large-scale dynamical evolution of the universe is governed by the Einstein field equations,
which capture an equivalence between the curvature of spacetime and the presence of matter and
energy. It is postulated that the accelerated expansion of the universe is driven by a negative
pressure due to the existence of a positive dark, vacuum energy Λ > 0 permeating spacetime, as
experimentally observed by Hubble in 1929 [11]. Under certain a priori assumptions and initial
conditions, we may derive the evolution of the universe by characterizing geometric properties of
spacetime such as curvature. As such, we seek to answer the following question.

Question. What is the time evolution of Ricci scalar curvature in a ΛCDM universe during the
late epoch?

The analysis proceeds by identifying the large-scale dynamical evolution of such a universe via
the non-vacuum Einstein field equations. By invoking the assumptions of a minimal six-parameter
ΛCDM model, namely that spatial curvature vanishes and radiation density parameter contribu-
tions are negligible, we readily calculate the rate at which the universe is expanding, and thus de-
termine an analytic solution to the Friedmann equations. By employing the Friedmann–Lemaitre–
Robertson–Walker metric, we determine the Ricci scalar curvature of the universe and compute its
asymptotic limit in the late epoch.

2 Pseudo-Riemannian Geometry and General Relativity

Spacetime (M,A,∇, g) is a four-dimensional Hausdorff differentiable topological manifold with a
smooth atlas A carrying a torsion-free connection ∇ compatible with a Lorentzian metric g. An
individual point in spacetime is henceforth referred to as an event. The path of a particle γ : R≥0 →
M parameterized by a one-dimensional set of elements is called a worldline [7]. Particles under the
influence of no force have a worldline that is straight in spacetime. Any event in a flat spacetime,
within the light cone, may be represented by a four-vector Xµ = (ct, x, y, z) = (x0, x1, x2, x4) ∈ R1,3

for µ = 1, 2, 3, 4, c the speed of light, and R1,3 the model Minkowski space. We can simply write
the four-vector as Xµ = (ct,x) for x ∈ R3.

Definition 2.1. Let (M,O,A) be a smooth manifold and let γ : R→M be a curve that is at least
C1, i.e. once continuously differentiable. Suppose γ(λ0) = p. Then the velocity of p is the linear
map νγ,p : C∞(M)

∼−→R where R has a vector space structure. The set C∞(M) together with the two
operations is a vector space of smooth functions (C∞(M),⊕,⊗). The velocity νγ,p : C∞(M)

∼−→R
is defined as νγ,p(f) := (f ◦ γ)′|t=λ0= (f ◦ γ)′(λ0), evaluating f along γ and taking the derivative
at λ0. Likewise, the velocity acts as f 7→ νγ,p(f) = (f ◦ γ)′(λ0). For each point p ∈ M we define
the tangent space to M at p to be:

TpM := {νγ,p : C∞(M)
∼−→R|γ smooth curve},
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the set of all possible tangent vectors to all possible smooth curves through the point p. See Appendix
A for a construction of the atlas on the tangent space of M .

Definition 2.2. A Newtonian spacetime is a quintuple of structures (M,O,A,∇, t) where t : M →
R is smooth absolute time t on M and (M,O,A) is a four-dimensional smooth manifold with
topology O and atlas A given by the local chart φ : U → V, U ⊂M and V ⊂ R4. The smooth time
function satisfies (dt)p 6= 0 for every p ∈M such that M is an absolute space (see Appendix A).

We present Newton’s laws of motion for a Newtonian spacetime which is curved.

(i) A body on which no force acts moves uniformly along a straight line, satisfying the autoparallel
transport equation ∇νγνγ = 0 for ∇XY the covariant derivative of the vector field Y with
respect to the vector field X.

(ii) The deviation of a body’s motion from a uniform motion is affected by a force reduced by a
factor of the body’s reciprocal mass. If there is no force, this reduces to the first law.

Gravity cannot be encoded in a curvature of space such that its effects show if particles under
the influence of no other force move along straight lines in curved space. Let Fα = mfα be a
gravitational force field, then

mẍα(t) = Fα(x(t)) (1)

for α = 1, 2, 3, where Fα satisfies the Poisson equation

−∂αfα = 4πGρ (2)

for ρ the density of matter in the universe. Since the gravitational force is proportional to the
mass of the body on which it acts, mẍα(t) = Fα(x(t)) = mfα(x(t)) so ẍα(t) = fα(x(t)) and the
motion becomes mass independent, a property of the weak equivalence principle. We interpret
ẍα(t) = fα(x(t)) as the autoparallel equation (see Appendix B):

γ̈m(x)(λ) + Γm(x)ab(γ(λ))γ̇a(x)(λ)γ̇b(x)(λ) = 0 (3)

for γm(x) = xm ◦ γ and Γm(x)ab connection coefficients of the connection ∇ on (M,O,A). How-
ever, one cannot find connection coefficients such that Newton’s equation takes the form of an
autoparallel equation. Since a particle may be parameterized in worldline coordinates by X =
(X0, X1, X2, X3) = (ct, x1(t), x2(t), x3(t)), Ẋ0 = 1 so Ẍ0 = 0. Observe that Ẍα for α = 1, 2, 3
is the same as ẍα for α = 1, 2, 3. We may set the speed of light c to unity by convention. Thus,
xα = Xα for α = 1, 2, 3 so ẍα − fα(x(t)) = 0 or

Ẍ0 = 0,

Ẍα − fα(X(t)) = 0 (α = 1, 2, 3).
(4)

Since Ẋ0 = 1, the second equation becomes Ẍα − fα(X(t))Ẋ0Ẋ0 = 0 for α = 1, 2, 3. Thus,

Ẍa + ΓabcẊ
bẊc (5)

for a = 0, 1, 2, 3, which is the autoparallel equation in spacetime. We can impose the equivalence by
choosing the connection coefficients Γ where Ẍ0 + Γ0

bcẊ
bẊc = 0 for a = 0 so Γ0

bc = 0 corresponds
to Ẍ = 0. To reconcile Ẍα + ΓαbcẊ

bẊc = 0 with Ẍα − fα(X(t))Ẋ0Ẋ0 = 0, we let

Γαβγ = Γα0β = Γαβ0 = 0,

Γα00 = −fα.
(6)
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In the local chart (U , x), Γα00 = −fα = − 1
mF

α and Γαβγ = Γα0β = Γαβ0 = 0. We can calculate the

Riemann curvature for ∇ defined by the Γijk above. Namely, Riem
(
dxα, ∂

∂X0 ,
∂

∂Xβ ,
∂

∂X0

)
= Rα0β0 =

−∂βfα. The Ricci tensor is the contraction of the Riemann curvature tensor R00 = Rm0m0 = −∂αfα
so R00 = 4πGρ. Note, density ρ can be expressed as the (0, 0)-component of the energy-momentum
tensor: T00 = ρ/2. If Φ is the gravitational potential of a gravitational field g as a function of
spacetime, then ∇Φ = −g and −∇ · g = 4πGρ by Gauss’s law. Furthermore,

∇2Φ = 4πGρ. (7)

Particles under the influence of no force have worldlines that are straight in spacetime.

Definition 2.3. A vector X ∈ TpM in spacetime is called

(i) future-directed if dt(X) > 0 for X ∈ Γ(TM).

(ii) spatial if dt(X) = 0.

(iii) past-directed if dt(X) < 0, where dt : TpM
∼−→R.

The worldline of a particle under the influence of no force is a future-directed autoparallel with
respect to ∇ on spacetime. If F is a spatial vector field then the equation of motion for a worldline
in the presence of gravity F is (see Appendix E):

Ẍα + ΓαγδẊ
γẊδ + Γα00Ẋ

0Ẋ0 + 2Γαγ0Ẋ
γẊ0 =

Fα

ma2
(8)

where a depends on the unit measure of time used and Newtonian spacetime is torsion-free. The
left-hand side represents the vector field components of acceleration and Γα00 = −fα in the presence
of gravity. See Appendix A for a review of Minkowski spacetime.

Definition 2.4. The four-velocity is the derivative of Xµ with respect to proper time τ because
it does not transform under Lorentz transformation. Thus, if c is the speed of light and v is the

magnitude of the three-velocity, νµ = dXµ

dτ =
(
dX0

dτ ,
dX1

dτ ,
dX2

dτ ,
dX3

dτ

)
= dXµ

dt
dt
dτ = 1√

1−v2/c2
dXµ

dt =(
c√

1−v2/c2
, 1√

1−v2/c2
dx
dt

)
.

Likewise, we consider the trajectory γ : R→ M of a particle in the spacetime M . Then γ is a
geodesic if and only if it satisfies the Euler–Lagrange equations for the Lagrangian

L :TM → R

X 7→
√
g(X,X)

(9)

where g(X,X) : Γ(TM)×Γ(TM)
∼−→C∞(M). In a local chart (U , x) of spacetime with connection

coefficients Γm(x)µν , the Euler–Lagrange geodesic equations describing the trajectory γ of a particle

are given by (see Appendix B):

γ̈ρ(x)(λ) + Γρ(x)µν(γ(λ))γ̇µγ̇ν . (10)

5



3 Deriving the Non-Vacuum Einstein Field Equations

Definition 3.1. Consider a relativistic Lorentzian spacetime (M,O,A↑,∇, g, T ) with absolute time
t orientation T . An observer is a worldline γ with g(νγ , νγ) > 0 and g(γ, νγ) > 0 together with
a choice of basis e0(λ) = νγ,γ(λ), e1(λ), e2(λ), e3(λ) of each Tγ(λ)M where the observer worldline
passes if g(eµ(λ), eν(λ)) = ηµν . An observer is therefore a smooth curve in the frame bundle LM
over M .

Here, the inner product on M is defined by the metric as:

g(eµ(λ), eν(λ)) = ηµν :=


1
−1

−1
−1


µν

(11)

so the basis vectors are orthonormal as a Lorentzian metric with signature (+−−−).

Definition 3.2. A clock carried by a specific observer (γ, e) = (γ, e0(λ), e1(λ), e2(λ), e3(λ)) will
measure a time, namely a proper time or eigentime, given by

τ :=

∫ λ1

λ0

dλ
√
gγ(λ)(νγ,γ(λ), νγ,γ(λ)) (12)

between the events γ(λ0), starting the clock, and γ(λ1), stopping the clock.

The action of a massive, future-directed particle worldline of mass m is

Smassive[γ] = m

∫
dλ
√
gγ(λ)(νγ,γ(λ), νγ,γ(λ)) (13)

with the proper-time orientation gγ(λ)(γγ(λ), νγ,γ(λ)) > 0. Similarly, the action of a massless particle
worldline with Lagrange multiplier µ is

Smassless[γ, µ] =

∫
dλµg

(
νγ,γ(λ), νγ,γ(λ)

)
. (14)

Composite systems with coupled fields have an action given by the sum of actions of the independent
part in addition to a non-linear interaction term. Consider the action S[γ] of one particle and an
action S[δ] of an another coupled particle. The interaction term is Sint[γ, δ], so the composite action
is S[γ] + S[δ] + Sint[γ, δ], as seen in electromagnetic field theories due to Maxwell (see Appendix
D).

We consider a field theory in which the local generalized coordinates are a set of fields Φi(x).
The action S is an integral over the space of Lagrangian density L [2]:

S =

∫
dnxL(Φi,∇µΦi) (15)

where L =
√
−gL̂ for L̂ a scalar. The corresponding Euler–Lagrange equations become:

∂L̂
∂Φ
−∇µ

(
∂L̂

∂(∇µφ)

)
= 0. (16)
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In fact, the action for a single scalar field φ is:

S[φ] =

∫
M
dnx
√
−g
[
−1

2
gµν(∇µφ)(∇νφ)− V (φ)

]
(17)

which has Euler–Lagrange equations of motion given by

∇µ∇µφ−
dV

dφ
:= �φ− dV

dφ
= 0. (18)

We henceforth set the speed of light to c = 1.
The Ricci scalar is the independent scalar obtained from the metric tensor with at most second-

order derivatives. Therefore, the simplest choice for the Lagrangian is the Ricci scalar from which
we obtain the so-called Einstein–Hilbert action:

SHilbert[g] =

∫
dx
√
−gR (19)

which is diffeomorphism invariant. We need to write down an action for the metric tensor field
itself. So the action Sgrav[g] will be added to carry Smatter[A, φ, . . . ] in order to describe the total
system. Therefore,

Stotal[g,A] = Sgrav[g] + SMaxwell[A, g]. (20)

If we vary the total action with respect to g, then there is a contribution from both Sgrav[g] and
SMaxwell[A, g]. In fact, the variation of Sgrav[g] with respect to g is called Gab, the Einstein tensor,
and the variation of SMaxwell[A, g] with respect to g is called −Tab, the energy-momentum tensor.

For any matter field Φ, Smatter[Φ, g] is a matter action and the energy-momentum tensor is the
(2, 0)-tensor

Tµν := − 2√
−g

(
∂Lmatter

∂gµν
− ∂λ

∂Lmatter

∂(∂λgµν)

)
. (21)

This originates from the contribution due to the variation of Smatter[Φ, g] =
∫
M d4xLmatter(g; Φ)

where T : Γ(T ∗M)×Γ(T ∗M)
∼−→C∞(M). The variation of the Einstein–Hilbert action SHilbert[g] =∫

M d4x
√
−gRµνgµν with respect to the metric is:

δSHilbert[g] =

∫
M
d4xδ(

√
−gRµνgµν)

=

∫
M
d4x[(δ

√
−g)Rµνg

µν +
√
−gδgµνRµν +

√
−ggµνδRµν ].

(22)

Let (δS)1 =
∫
M d4xRδ

√
−g, (δS)2 =

∫
M d4x

√
−gRµνδgµν , and (δS)3 =

∫
M d4x

√
−ggµνδRµν . Ob-

serve, the Ricci tensor is the contraction of the Riemann curvature tensor

Rρµλν = ∂µΓρνσ − ∂µΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (23)

The variation of the Riemann curvature tensor is thus

δRρσµν = ∂µδΓ
ρ
νσ − ∂νδΓρµσ + δΓρµλΓλνσλ− δΓ

ρ
νλΓλµσ − ΓρνλδΓ

λ
µσ

= ∇µ(δΓρνσ)−∇ν(δΓρµσ)

:= (δΓ)ρνσ;µ − (δΓ)ρµσ;ν .

(24)

By contracting two indices, we obtain the Palatini identity:

δRσν = ∇ρ(δΓρνσ)−∇ν(δΓρρσ). (25)
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Since gµνgλν = δµλ , we may determine the variations of the metric and the inverse metric in terms
of one another by

δgµν = −gµρgνσδgρσ. (26)

Considering (δS)1, if M ∈ Matn×n(K) has non-vanishing determinant over the field K, then
ln(detM) = Tr(lnM) where exp(lnM) = M . The variation of this identity is 1

detM δ(detM) =
Tr(M−1δM). Setting M = gµν and detM = det gµν := g, we find

δg = g(gµνδgµν) = −g(gµνδg
µν). (27)

By the above,

δ
√
−g = − 1

2
√
−g

δg

=
g

2
√
−g

gµνδg
µν

= −1

2

√
−ggµνδgµν .

(28)

Let A and B be (1, 1)-tensors, then (∇νA)ij = Aij;ν and (∇νB)ij = Bi
j;ν . Assuming the metric is

compatible, i.e. ∇g = 0,

√
−ggµνδRµν =

√
−ggµν [(δΓ)mµλ;ν − (δΓ)λµν;λ]

=
√
−g(gµνδΓλµν);λ.

(29)

Thus, ∇ν(gµνδΓλµλ) = (∇νgµν)δΓλµλ + gµν(∇νδΓλµλ) = gµν∇νδΓλµλ. The expression thereby reduces
to

√
−ggµνδRµν =

√
−g(gµνδΓλµλ);ν −

√
−g(gµνδΓλµν);λ

= (
√
−gAν);ν − (

√
−gBν);ν .

(30)

Adding the respective terms for the different variations, we obtain the total variation

δSHilbert =

∫
M
d4x

[
1

2

√
−ggλρδgλρgµνRµν −

√
−ggµλgνρδgλρRνν + (

√
−gAν);ν − (

√
−gBν);ν

]
(31)

where the Gibbons–Hawking–York boundary divergence surface term (
√
−gAν);ν − (

√
−gBν);ν

vanishes at the boundary of M . Thus,

δSHilbert =

∫
M
d4x
√
−gδgµν

[
Rµν −

1

2
gµνR

]
(32)

for an arbitrary variation gµν . Recall, the derivative of the action varied over a set of fields {Φi}
satisfies [3]:

δS =

∫
M

∑
i

(
δS

δΦi
δΦi

)
dnx. (33)

It follows that the Einstein field equations in a vacuum are:

0 =
1√
−g

δSHilbert

δgµν

= Rµν −
1

2
Rgµν .

(34)
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We would like to determine the non-vacuum Einstein field equations given by the Einstein–Hilbert
action with an additional Lagrangian density LM describing matter fields. That is, we consider

S =
1

16πG
SHilbert + SM :=

∫
M
d4x
√
−g
[

1

16πG
R+ LM

]
. (35)

By following a similar variational procedure, we find

0 =
1√
−g

δS

δgµν

=
1

16πG

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSM
δgµν

.

(36)

Defining the energy-momentum tensor as

Tµν = −2
1√
−g

δSM
δgµν

(37)

we recover the Einstein field equations

Rµν −
1

2
Rgµν = 8πGTµν . (38)

If we modify the action by the so-called cosmological constant Λ to

S =

∫
M
d4x
√
−g
[

1

16πG
(R− 2Λ) + LM

]
(39)

and refactor the speed of light c, we obtain the modified Einstein field equations

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (40)

a set of ten independent equations. In 1915, Einstein set Λ < 0 in order to obtain a static, non-
expanding universe. In 1929, Hubble discovered that the universe is expanding at an accelerated
rate and set Λ = 0. Presently, it is known that Λ > 0, albeit very small. This term in the modified
Einstein field equations is called dark energy; it does not interact with anything, but it contributes
to the curvature of spacetime. There is dark energy everywhere in the spacetime M provided by
the Λ. It is hypothesized that such energy is the vacuum fluctuations of primordial quantum fields
in spacetime due to the uncertainty principle of quantum mechanics.

The definition of the energy-momentum tensor in Equation (37) also agrees with a scalar field
theory. Consider the action for a scalar field φ with potential V (φ):

S[φ] =

∫
M
dnx
√
−g
[
−1

2
gµν(∇µφ)(∇νφ)− V (φ)

]
, (41)

and vary it with respect to the inverse metric as follows.

δS[φ] =

∫
M
dnx

[√
−g
(
− 1

2
δgµν∇µφ∇νφ

)
+ δ
√
−g
(
− 1

2
gµν∇µφ∇νφ− V (φ)

)]
=

∫
M
dnx
√
−gδgµν

[
−1

2
∇µφ∇νφ+

(
− 1

2
gµν

)(
− 1

2
gρσ∇ρφ∇σφ− V (φ)

)] (42)

Thus, applying the definition of the energy-momentum tensor, we have

Tµν [φ] = −2
1√
−g

δS[φ]

δgµν

= ∇µφ∇νφ−
1

2
gµνg

ρσ∇ρφ∇σφ− gµνV (φ),

(43)

which is correct for a scalar field theory.
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4 The Friedmann–Lemaitre–Robertson–Walker Metric and the
Expanding Universe

The universe is postulated to be a priori spatially homogeneous and isotropic, such that it may
be foliated into maximally symmetric space-like slices. Thus, the spacetime M may be written as
R×Σ where R represents the temporal dimension and Σ is a maximally symmetric three-manifold.
The spacetime metric has a line component of the form

ds2 = −dt2 +R2(t)dΣ2 (44)

where R(t) is the scale factor, a function of time, and dΣ2 is the metric on Σ which may be written
as

dΣ2 = γij(x)dxidxj (45)

for (x1, x2, x3) comoving coordinates on Σ and γij the maximally symmetric three-dimensional
metric. Intuitively, the scale factor R(t) is a measure of the radius of the time slice at a given time
t. Maximally symmetric metrics satisfy

Rijkl = k(γikγjl − γilγjk) (46)

for k the Gaussian curvature of Σ. We normalize the curvature k to either +1, 0,−1, corresponding
to different maximally symmetric spatial universes. If k = −1, Σ has constant negative curvature
and the universe is open or hyperbolic. If k = 0, Σ has no curvature and the universe is flat or
Euclidean. If k = +1, Σ has constant positive curvature and the universe is closed or parabolic.
Thus, in a homogeneous and isotropic universe, for τ proper time, the metric line element is

ds2 = −c2dτ2 = −c2dt2 + a(t)2dΣ2 (47)

for Σ ranging over a maximally symmetric three-manifold of uniform Gaussian curvature, i.e. an
elliptic, Euclidean, or hyperbolic space. The metric on a homogeneous and isotropic, maximally
symmetric hyper-surface in polar coordinates (r, θ, φ) may be written as

ds2 = −c2dt2 + a(t)2

[
dr

1− kr2
+ r2dΩ2

]
(48)

where dΩ2 = dθ2 + sin2 θdφ2. When |k|= 1, the radius of curvature of M is simply a(t). We
compute the Christoffel symbols and, hence, Ricci curvature [3]:

Γ0
11 =

aȧ

1− kr2
, Γ1

11 =
kr

1− kr2

Γ0
22 = aȧr2, Γ0

33 = aȧr2 sin2 θ

Γ1
01 = Γ2

02, Γ3
03 =

ȧ

a
Γ1

22 = −r(1− kr2), Γ1
33 = −r(1− kr2) sin2 θ

Γ2
12 = Γ3

13,

Γ2
33 = − sin θ cos θ, Γ3

23 = cot θ.

(49)
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As such, the non-zero components of the Ricci tensor are

R00 = −3
ä

a

R11 =
aä+ 2ȧ2 + 2k

1− kr2

R22 = r2(aä+ 2ȧ2 + 2k)

R33 = r2(aä+ 2ȧ2 + 2k) sin2 θ,

(50)

from which it follows that the Ricci scalar curvature is

R = 6

[
ä

a
+

(
ȧ

a
+

k

a2

)2
]
. (51)

The expansion of the universe is uniquely parameterized by the dimensionless scale factor a :=
a(t) for 0 ≤ t < ∞. At present day t0, the scale factor is a0 := a(t0), which is an integration
constant determined by initial conditions.

5 Deriving the Ricci Scalar Curvature in a ΛCDM Model

The matter and energy in a spatially homogeneous and isotropic universe may be modelled by
a perfect fluid. Moreover, the perfect fluid will be at rest in comoving coordinates. Thus, the
four-velocity is the time-like vector field

Uµ = (1, 0, 0, 0), (52)

normalized such that g(U,U) = 1. The energy-momentum tensor is [3]:

Tµν = (ρ+ p)UµUν + pgµν (53)

or, equivalently, 
ρ 0 0 0
0
0 gijp
0

 . (54)

It assumes the form Tµν = diag(−ρ, p, p, p) with a trace of T = Tµµ = −ρ+ 3p. The radiation fluid
must satisfy Tµνp.f.gµν = 0 such that ρ = 3p or

p =
1

3
ρ, (55)

which is its equation of state. That is, the energy-momentum tensor is trace-free. If p = 0, we have
dust which still has a density but does not develop pressure in the early universe. Consider the
zero component of the energy conservation equation [3]:

0 = ∇µTµ0 = ∂µT
µ
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ . (56)

Definition 5.1. A relation p = Φ(ρ) is called an equation of state for a perfect fluid of density ρ
and pressure p.
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ω Matter field

1/3 Radiation, relativistically momentous particles

0 Dust

−1 Cosmological constant (negative pressure p = −ρc2)

−k/3 Spatial curvature

Figure 1: Matter fields for different equations of state ω.

Perfect fluids behave according to the equation of state

ω =
p

ρ
, (57)

whereby the parameter ω corresponds to different matter fields (see Figure 1). Thus, the conser-
vation of energy becomes

ρ̇

ρ
= −3(1 + ω)

ȧ

a
, (58)

which may then be integrated to obtain the relation ρ ∝ a−3(1+ω). The dominant energy condition
requires that matter does not destabilize, which means |ω|≤ 1. Dust is a matter type consisting
of non-relativistic particles with approximately zero pressure pM = 0. Such a universe is said
to be matter-dominated and the energy density varies as ρM ∝ a−3. Radiation refers to either
electromagnetic radiation or massive particles moving at relativistic speeds. A radiation-dominated
universe is one in which the majority of energy density is derived from radiation. The energy density
behaves asymptotically as ργ ∝ a−4. Today, the ratio of matter density to radiation density is on
the order of ρM/ργ ∝ 103. Vacuum energy, due to the curvature of the maximally symmetric hyper-
surface R × Σ, behaves like a perfect fluid with equation of state pΛ = −ρΛ. The energy density
is therefore a constant ρΛ ∝ a0. Energy density, in the form of matter and radiation, decreases
exponentially as the universe expands so a nonzero vacuum energy dominates the universe at large
times. The universe is then said to be vacuum-dominated, examples of which include de Sitter and
anti-de Sitter space. Inserting the ansatz for Tµν in the Einstein field equations

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
,

the (0, 0)-component equation reads

−3
ä

a
= 4πG(ρ+ 3p) (59)

and the general (i, j)-component equation gives

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p). (60)

We eliminate second-order derivatives in Equation (59) and, therefore, conclude:(
ȧ

a

)2

=
8πG

3
ρ− k

a2
(61)

and
ä

a
= −4πG

3
(ρ+ 3p). (62)

12



Re-introducing the cosmological constant into these equations, we obtain:

ä = −4πG

3
(ρ+ 3p)a+

Λ

3
,(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
,

(63)

which are known as the Friedmann equations. Note, the first Friedmann equation may be used to
obtain the conservation law Tµν;ν = 0.

The rate of expansion of the universe is given by the Hubble parameter

H =
ȧ

a
. (64)

The Hubble parameter in the present epoch is known as the Hubble constant H0 ∼ 70±10kms−1Mpc−1.

Definition 5.2. The density parameter is given by

Ω =
8πG

3H2
ρ =

ρ

ρcrit
(65)

where the critical density

ρcrit =
3H2

8πG
(66)

is the density needed for arrested expansion a(t) = 0 of the universe at infinite time, for which the
spatial three-manifold Σ is Euclidean. A universe with critical density is said to be flat.

Thus, the first Friedmann equation may be written as

Ω− 1 =
k

H2a2
, (67)

which corresponds to a universe of fixed density parameter and spatial curvature (see Figure 2).

Density ρ Density parameter Ω Spatial curvature k Type of maximally symmetric three-manfiold Σ

ρ < ρcrit Ω < 1 k < 0 open

ρ = ρcrit Ω = 1 k = 0 flat

ρ > ρcrit Ω > 1 k > 0 hyperbolic

Figure 2: Density ρ, density parameter Ω, and spatial curvature k for different types of maximally
symmetric three-manifolds Σ.

Using empirical observation, it is believed Ω ∼ 1. By integrating the Friedmann equations, we
find

H2 ∼ ρ ∼ a−n(ω), (68)

where n(ω) = 3(1 + ω) and the scale factor obeys:

a(t) = a0

{
t

2
n(ω) , if ω 6= 1

eHt, if ω = −1.
(69)
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For all matter types other than ω = −1, H2 ∼ ρ ∼ a−n(ω) where a(t) = a0t
2

n(ω) . Then ρ(t) ∼(
a0t

2
n(ω)

)−n(ω)
= a

−n(ω)
0 t−2 or ρ(t) ∼ t−2 which means the density becomes arbitrarily large at

t = 0, corresponding to a singularity. Penrose and Hawking demonstrated that with a suitable
definition of singularity, the world lines end at finite proper time t = 0 going backwards.

The equations of state p = ωiρi, for ωi constant and i = 1, . . . ,#matter types, satisfy H2 ∼
ρ ∼ a−n(ω). The density parameter for matter of density ρi is

Ωi :=
8πG

3

ρi
H2

. (70)

However, this does not apply to the scalar curvature of the underlying time-like three-manifold
slices or the cosmological constant, which are pseudo-matter types. These arise in the action as
corrections to the matter Lagrangian:∫

M
d4x
√
−g(R+ (2Λ + Lmatter)). (71)

The pseudo-density parameter for spatial curvature is

Ωk = − k

H2a2
. (72)

Likewise, the density parameter for the cosmological constant is

ΩΛ :=
Λ

3H2
. (73)

Using the Hubble function and the density parameters together with the Friedmann equations, we
obtain

Ωk +
n∑
i=1

real matter types

Ωi = 1 (74)

for the matter types i = 1, . . . , n = #matter types. From the Friedmann acceleration equation, we
ascertain the following identity.

H−2 ä

a
= −1

2

n∑
i=1

real matter types

(1 + 3ωi)Ωi (75)

We consider the dominant matter types at various epochs. Since φi ∼ a−n(ωi) for any type of
matter, i.e. radiation (ω = 1/3) nγ = 4, dust (ω = 0) nM = 3, spatial curvature (ω = −1/3)
nk = 2, and dark energy (ω = −1) nΛ = 0, it follows that

a2Ωk = − ka2

H2a2
∼ ΩΛ ∼

1

H2

a3ΩM =
8πG

3a3H2
a3 ∼ 1

H2

a4Ωγ =
8πG

3a4H2
a4 ∼ 1

H2
.

(76)

Thus, we conclude that
ΩΛ ∼ a2Ωk ∼ a3ΩM ∼ a4Ωγ , (77)

which dictates the distribution of matter types for different epochs.
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Remark 5.3. A vacuum energy-dominated universe is described by the metric

ds2 = −dt2 + eHt(dx2 + dy2 + dz2) (78)

where the Hubble parameter H is constant. De Sitter space is the spacetime with positive cosmo-
logical constant. As a → ∞, curvature and matter become negligible so the universe approaches a
de Sitter space asymptotically.

The ΛCDM model is a concordance cosmology theory which posits that the universe contains
dark energy Λ and cold dark matter (CDM). Such a model provides an argument for the large-scale
distribution of galaxies as well as the accelerated expansion of the universe, as observed by Hubble
in 1929 [9].

Let Ωγ be the density parameter for radiation, Ωk the density parameter for spatial curvature,
ΩΛ the density parameter for dark energy, and ΩM the density parameter for real matter. The
Friedmann equation may be re-written as

(
ȧ(t)

a(t)

)2

= H2
0

ΩM

(
a(t0)

a(t)

)3

+ ΩΛ

 (79)

where H0 is the present value of the Hubble constant and a(t0) = a0 = 1, by convention. The
conformal time η may be expressed in terms of physical time t as η = dt

a(t) . Thus, we write the first

Friedmann equation as [9]:

1

a2(t)

(
da(t)

dt

)2

= H2
0

[
ΩM

1

a3
+ ΩΛ

]
. (80)

Integrating the Friedmann equation, we obtain the expression:

H0t =
2

3
√

ΩΛ

∫ u′

0

du√
1 + u2

(81)

where the upper bound is u′ =
√

ΩΛ
ΩM

a3/2. The current age of the universe may be determined

when u′ =
√

ΩΛ
ΩM

. As such, the age of the universe in terms of these parameters is

H0t0 =
2

3
√

ΩΛ
ln

(
1 +
√

ΩΛ√
ΩM

)
. (82)

The scale factor may be analytically computed from Equation (81) as [6]:

a(t) =

(
ΩM

ΩΛ

)1/3 [
sinh

(3

2

√
ΩΛH0t

)]2/3

. (83)

In the limiting case of H0t� 1, the contribution from the cosmological constant tends to zero and
the universe expands at a decelerated rate [9]. During a matter-dominated epoch, we develop a
Taylor series expansion of Equation (82):

a(t) =

(
9

4
ΩM

)1/3

(H0t)
2/3. (84)
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At present, the scale factor aM is the ratio of the current radiation density to the current matter
density; namely, the redshift of the current universe is

zm =
a0

aM
− 1 =

ΩM

Ωγ
− 1. (85)

According to measurements by the seven-year Wilkinson Microwave Anisotropy Probe (WMAP),
the redshift is approximately zm = 3, 196 [10]. The physical time tm, which corresponds to matter
domination, is given by

tm
t0

=

√
ΩΛ

Ωλ

a
3/2
M

ln
(

1+
√

ΩΛ√
ΩM

) . (86)

In the limiting case of H0t � 1, the cosmological constant contribution dominates while matter
density is suppressed, according to Equation (77), which means that the scale factor becomes:

a(t) =

(
ΩM

4ΩΛ

)1/3

exp
(√

ΩΛH0t
)
, (87)

corresponding to a de Sitter space. See Figure 3 for an illustration of a(t) from t = 0 to t = 0.02
seconds in an FLRW universe, and for the cases of H0t� 1 and H0t� 1.

Figure 3: Primordial scale factor a(t) from t = 0 to t = 0.02 seconds into the expansion of a
ΛCDM universe due to the Friedmann–Lemaitre–Robertson–Walker metric and the limiting cases
of H0t� 1 and H0t� 1.

To determine the transient condition for changing from a decelerated expansion to an accelerated
expansion, we consider the second Friedmann equation. The equation may be expressed as [9]:

1

a(t)

(
d2a(t)

dt2

)2

+
1

2

(
ΩM

a3(t)
− 2ΩΛ

)
= 0.
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When t = tΛ := 2
3H0
√

ΩΛ
, the declerated expansion transitions into an accelerated expansion deter-

mined by the second-order linear differential equation

d2a(t)

dt2
= 0.

When t = tΛ, the scale factor is

aΛ =

(
ΩM

2ΩΛ

)1/3

, (88)

which has a corresponding redshift of

zΛ =
1− aΛ

aΛ
=

(
2ΩΛ

ΩM

)1/3

− 1.

The physical time for which the expansion changes from a deceleration to an acceleration is deter-
mined by the relation

H0tΛ =

∫ aΛ

0

√
ada√

ΩM + ΩΛa3
, (89)

whereby, according to WMAP and the Planck mission, H0 = 67.3 km s−1Mpc−1,Ωγ = 9.24 ×
10−5,ΩM = 0.315,ΩΛ = 0.685,Ωk = 0.

If ω is the equation of state for dark energy, the Friedmann equation may be written as

H(a) =
ȧ

a
= H0

√
Ωka−2 + (Ωc + Ωb)a−3 + Ωγa−4 + ΩΛa−3(1+ω) (90)

where we denote by c cold dark matter, by γ radiation, by Λ dark energy, and by b baryons. For
the ΛCDM six-parameter model, we assume Ωk = 0 and ω = −1 so (see Figure 4)

H(a) =
√

ΩΛ + ΩMa−3 + Ωγa−4. (91)

It follows that

t(a) =

∫ a

0

a′da′

a′2H(a′)
=

1

H0

∫ a

0

a′da′√
Ωγ + ΩMa′ + Ωka′

2 + ΩΛa′
4

(92)

is the age of the universe as a function of a.
In the late epoch, Ωγ ∼ 10−4. By ignoring this term, the analytic solution of the aforementioned

first-order differential equation (90) is [4]:

a(t) =

(
ΩM

ΩΛ

)1/3

sinh2/3

(
3H0

√
ΩΛt

2

)
.

The transition from a decelerating universe to an accelerating universe is the physical time
for which a = (ΩM/2ΩΛ)1/3. Thus, for a ΛCDM model of the universe (M,OM ,AC∞(M),

L.C.∇),
radiation Ωγ is negligible and spacetime is foliated as M ∼= R × Σ where Σ is the three-manifold
with corresponding spatial curvature k chosen to be 0.

Recall that the Ricci scalar for the Friedmann–Lemaitre–Robertson–Walker metric is given by

R = 6

(
ä(t)

c2a(t)
+

ȧ2(t)

c2a2(t)
+

k

a2(t)

)
.
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Figure 4: Primordial Hubble parameter H(a) from t = 0 to t = 0.05 seconds into the expansion of
a ΛCDM universe.

If ω = 0 for a matter-dominated universe, then ȧ(t) ∝ 2
3 t
−1/3, ä(t) ∝ −2

9 t
−4/3 so

RM (t) = 6

 1

c2

(
−2

9 t
−4/3

2
3 t
−1/3

)
+

1

c2

(
2
3 t
−1/3

t2/3

)2

+ k
(
t−2/3

)2


= 6

(
− 2

9c2
t−2 +

4

9c2
t−2

)
=

4

3

t−2

c2
∼ O(t−2)

(93)

because k = 0 in a ΛCDM model. Likewise, if ω = 1/3 for a radiation-dominated universe, then
ȧ(t) ∝ 1

2 t
−1/2, ä(t) ∝ −1

4 t
−3/2 so

Rγ(t) = 6

 1

c2

(
−1

4 t
−3/2

t1/2

)
+

1

c2

(
1
2 t
−1/2

t1/2

)2

+ 0


= 6

(
− 1

4c2t2
+

1

4c2t2

)
= 0.

(94)

If ω = −1 for a dark energy-dominated universe, then a(t) ∝ eHt, ȧ(t) ∝ HeHt, ä(t) ∝ H2eHt so

RΛ(t) = 6

 1

c2

(
H2eHt

eHt

)
+

1

c2

(
HeHt

eHt

)2

+ 0


= 6

(
H2

c2
+
H2

c2

)
=

12H2

c2
.

(95)
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If the matter in the universe is a mixture of non-interacting fluids then

ρ̇i = −3H
(
ρi +

pi
c2

)
for each fluid i whereby ρ̇i = −3H(ρi + ωiρi). It follows that ρi ∝ a−3(1+ωi). For instance, if we
consider a density given by a combination of dust A (ω = 0), radiation B (ω = 1/3), and dark
energy C (ω = −1) then the combined density is given by ρ = Ca0 +Aa−3 +Ba−4. We substitute

this density into
(
ȧ
a

)2
= 8πG

3 ρ− kc2

a2 where k = 0 for a ΛCDM model to obtain(
ȧ

a

)2

=
8πG

3
ρ =

8πG

3

(
Ca0 +Aa−3 +Ba−4

)
or (

da

dt

)2

=
8πG

3
(Ca2 +Aa−1 +Ba−4).

Since Ωγ ∼ 0, the analytic solution

a(t) =

(
ΩM

ΩΛ

)1/3 [
sinh

(3

2

√
ΩΛH0t

)]2/3

may be differentiated iteratively. We obtain the following derivatives:

ȧ(t) =

(
ΩM

ΩΛ

)1/3√
ΩΛH0

cosh
(

3
2

√
ΩΛH0t

)(
sinh(3

2

√
ΩΛH0t)

)1/3 ,
ä(t) =

(
ΩM
ΩΛ

)1/3√
ΩΛH0(

sinh
(

3
2

√
ΩΛH0t

))2/3

[
3

2

√
ΩΛH0 sinh

(
3

2

√
ΩΛH0t

)(
sinh

(3

2

√
ΩΛH0t

))1/3

− 1

3

(
sinh

(3

2

√
ΩΛH0t

))−2/3

cosh
(3

2

√
ΩΛH0t

)3

2

√
ΩΛH0 cosh

(3

2

√
ΩΛH0t

)]
.

The Hubble parameter is

H =
ȧ

a

(
ΩM

ΩΛ

)1/3√
ΩΛH0

cosh
(

3
2

√
ΩΛH0t

)(
sinh

(
3
2

√
ΩΛH0t

))1/3

(
ΩM

ΩΛ

)−1/3 1(
sinh

(
3
2

√
ΩΛH0t

))2/3

=
√

ΩΛH0 coth

(
3

2

√
ΩΛH0t

)
.

Similarly,

ä(t)

a(t)
=

(
ΩM

ΩΛ

)1/3√
ΩΛH0

3

2

√
ΩΛH0

(
sinh

(3

2

√
ΩΛH0t

))4/3

− 1

2

√
ΩΛH0

cosh2
(

3
2

√
ΩΛH0t

)
(

sinh
(

3
2

√
ΩΛH0t

))2/3


× 1(

sinh
(

3
2

√
ΩΛH0t

))2/3

(
ΩM

ΩΛ

)−1/3 1(
sinh

(
3
2

√
ΩΛH0t

))2/3

=
√

ΩΛH0

[
3

2

√
ΩΛH0 −

1

2

√
ΩΛH0 coth2

(3

2

√
ΩΛH0t

)]
=

1

2
H2

0 ΩΛ

(
3− coth2

(3

2

√
ΩΛH0t

))
.
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Thus, since k = 0 in the ΛCDM model,

R(t) = Rµν(t)gµν(t) := 6

(
ä(t)

c2a(t)
+

ȧ2(t)

c2a2(t)

)
= 6

(
1

2c2
H2

0 ΩΛ

(
3− coth2

(3

2

√
ΩΛH0t

))
+

1

c2
ΩΛH

2
0 coth2

(3

2

√
ΩΛH0t

))

=
9H2

0 ΩΛ

c2
+

3H2
0 ΩΛ

c2
coth2

(
3

2

√
ΩΛH0t

) (96)

is the time-evolving Ricci scalar curvature for the ΛCDM universe under the assumption that the
radiation density parameter is negligible at late times, for ΩΛ ∼ a2Ωk ∼ a3ΩM ∼ a4Ωγ (see Figure
5).

Figure 5: Primordial Ricci scalar curvature R(t) from t = 0 to t = 0.1 seconds into the expansion
of a ΛCDM universe.

The asymptotic limit of the Ricci scalar curvature R(t) for infinite time is

R∞ := lim
t→∞

R(t) = lim
t→∞

9H2
0 ΩΛ

c2
+

3H2
0 ΩΛ

c2
coth2

(
3

2

√
ΩΛH0t

)
=

9H2
0 ΩΛ

c2
+

3H2
0 ΩΛ

c2
lim
t→∞

coth2

(
3

2

√
ΩΛH0t

)
=

12H2
0 ΩΛ

c2
.

(97)

We use the Laurent expansion of hyperbolic cotagent to approximate the hyperbolic expression in
Equation (96) in an open neighborhood of t = 0 as (see Appendix C).

coth

(
3

2

√
ΩΛH0t

)
=

2

3

1√
ΩΛH0

1

t
+

1

2

√
ΩΛH0t−

9

40
Ω

3/2
Λ H3

0 t
3 +O(t5). (98)
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Thus, up to first-order approximation and for sufficiently small times t, we have the asymptotic
relation coth

(
3
2

√
ΩΛH0t

)
∼ 2

3
1√

ΩΛH0

1
t so that the primordial Ricci scalar curvature is:

R(t) =
9H2

0 ΩΛ

c2
+

3H2
0 ΩΛ

c2

(
2

3

1√
ΩΛH0

1

t
+

1

2

√
ΩΛH0t−

9

40
Ω

3/2
Λ H3

0 t
3 +O(t5)

)2

=
9H2

0 ΩΛ

c2
+

3H2
0 ΩΛ

c2

(
2

3

1√
ΩΛH0

1

t
+O(t)

)2

=
9H2

0 ΩΛ

c2
+

4

3

1

c2t2
+O(1).

(99)

By approximating hyperbolic cosine in an open neighborhood of t = 0, as in Equation (98), we can
carry out the following computation.

R(t) =
9H2

0 ΩΛ

c2
+

3H2
0 ΩΛ

c2

(
2

3

1√
ΩΛH0

1

t
+

1

2

√
ΩΛH0t−

9

40
Ω

3/2
Λ H3

0 t
3 +O(t5)

)2

=
9H2

0 ΩΛ

c2
+

3H2
0 ΩΛ

c2

(
4

9

1

ΩΛH2
0

1

t2
+

2

3
− 1

20
H2

0 ΩΛt
2 − 9

40
H4

0 Ω2
Λt

4 +
81

1600
H6

0 Ω3
Λt

6 +O(t8)

)
=

4

3

1

c2t2
+ 11

H2
0 ΩΛ

c2
− 3

20

H4
0 Ω2

Λ

c2
t2 − 27

40

H6
0 Ω6

Λ

c2
t4 +

243

1600

H8
0 Ω4

Λ

c2
t6 +O(t8).

(100)

6 de Sitter Space, Local Gauge Theory, and Non-Minimally Cou-
pled Inflation

At infinite time, dark energy will dominate the density ρ of the universe. If the universe M = R×Σ
is spatially homogeneous and isotropic, the Copernican principal implies that the spatial three-
manifold Σ is maximally symmetric. Isotropy and homogeneity together imply that spacetime
has the maximum number of Killing vectors allowed, spanning a Lie algebra. The solution to the
non-vacuum Einstein field equations with Λ > 0 corresponds to a de Sitter space, the maximally
symmetric spacetime with positive curvature. Likewise, the solution with Λ < 0 represents an
anti-de Sitter space, which is also maximally symmetric with negative curvature. The late epoch,
present-day value of the cosmological constant in the ΛCDM universe is Λ = 1.1056×10−52m−2 [1].
Therefore, we adopt the model of de Sitter space. The field that gives rise to inflation is called the
inflaton. In an expanding spacetime, two inertial observers move farther apart with accelerating
velocity following the inside-out black hole polar metric [8]:

−(1− Λr2)dt2 +
1

1− Λr2
dr2 + r2dΩ2. (101)

Such an exponentially expanding spacetime is called a de Sitter space, filled everywhere by a vacuum
energy proportional to Λ and devoid of matter and radiation. Thus, de Sitter space is the limiting
case of the standard FLRW model of inflation. The scale factor associated with a de Sitter space is
a(t) = a0e

Ht where H ∝
√

Λ. The Friedmann–Lemaitre–Robertson–Walker metric in hyperpolar
coordinates is

ds2 = c2dt2 − eHt[dr2 + r2dΩ2
2]

= c2dt2 − eHt[dr2 + r2(dθ2 + sin2 θdφ2)]
(102)

for dΩ2
2 the metric on the round two-sphere.
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The Riemann curvature tensor of a maximally symmetric n-dimensional manifold is given by

Rµνρσ = k(gµρgνσ − gµσgνρ), (103)

where k is the normalized Ricci curvature

k =
R

n(n− 1)
(104)

with constant Ricci scalar R [3]. For vanishing curvature k, the maximally symmetric spacetime is
a Minkowski spacetime R1,n with metric

ds2 = −dx2
0 +

n∑
i=1

dx2
i . (105)

De Sitter space dSn corresponds to the maximally symmetric spacetime with positive curvature k.
In fact, de Sitter space is a Lorentzian sub-manifold of the hyperboloid

−x2
0 +

n∑
i=1

x2
i = α2 (106)

for α 6= 0. The metric on dSn is pulled back from the metric of the ambient Minkowski space
R1,n. De Sitter space dSn is topologically equivalent to R × Sn−1 as the quotient of orthogonal
groups O(1,n)

O(1,n−1) with isometry group O(1, n). Thus, the metric has n(n+ 1)/2 Killing vector fields,
whereby the Riemann curvature tensor is

Rµνρσ =
1

α2
(gµρgνσ − gµσgνρ).

Since the Ricci tensor is proportional to the metric tensor, i.e. Rµν = n−1
α2 gµν , de Sitter space is an

Einstein manifold. As such, it is a vacuum solution with cosmological constant

Λ =
(n− 1)(n− 2)

2α2
(107)

and Ricci scalar curvature

R =
n(n− 1)

α2
. (108)

We use closed slicing on a patch of four-dimensional de Sitter sapce dS4 to induce local coordinates
(t, ξ, θ, φ) given by [3]:

x0 = α sinh(t/α)

x1 = α cosh(t/α) sin(ξ) cos(θ)

x2 = α cosh(t/α) sin(ξ) sin(θ) cos(φ)

x3 = α cosh(t/α) sin(ξ) sin(θ) sin(φ)

x4 = α cosh(t/α) cos(ξ),

(109)

from which we derive the nondegenerate Lorentzian metric:

ds2 = −dt2 + α2 cosh2(t/α)dΩ2
3

= −dt2 + α2 cosh2(t/α)
[
dξ2 + sin2 ξ(dθ2 + sin2 θdφ2)

] (110)
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for dΩ2
3 = dξ2 + sin2 ξdΩ2

2 the round metric on the three-sphere, given in terms of the round metric
on the two-sphere by dΩ2

2. Under a conformal transformation tan(χ/2) = tanh(t/2α), we obtain
the conformally equivalent metric [11]:

ds2 =
α2

cos2 χ
(−dχ2 + dΩ2

3). (111)

Thus, Λ = 3/α2 and R = 4Λ. We henceforth assume α = 1, corresponding to the positive spatial
curvature k = 1. The spatial sub-manifold of four-dimensional de Sitter space is invariant under
rotations of SO(3) which gives rise to a symmetry and, by Noether’s theorem, a conservation law,
namely that of the energy momentum tensor: Tµν;ν = 0. Let Φ be the inflation potential for de
Sitter space.

Consider the model for non-minimally coupled inflation in which the coupling constant ξ between
gravity R and the magnitude of the inflaton field φ is not negligible, with an associated action [5]:

S[φ,R] =

∫
M
d4x
√
−gL(φ, g)

=

∫
M
d4x
√
−g
[
m2
P

2
R− 1

2
∇µφ∇µφ− V (φ)− ξ

2
Rφ2

]
,

(112)

where mP =
√
h̄c/G is the Planck mass and V (φ) is the potential as a function of the inflaton field.

The improved Noether current jµ(L, X) = TµνXµ, associated with the Killing symmetry X of the
action functional, must be linear in X and depend on the values of X. Diffeomorphism invariance
of the functional means δXS[φ, g] = 0 for all X,φ, g. Introduce the vector of fields Φ = (φ,R)T .
We then define the globally gauge invariant Lagrangian

Lglb =
1

2
(∂µΦ)T∂µΦ− 1

2
m2ΦTΦ

=
m2
P

2
R− 1

2
∂µφ∂µφ− V (φ)− ξ

2
Rφ2

(113)

where m :=
∫
M d4x

√
−gρ(x) is the mass of the universe for spacetime density ρ(x), ∂µφ is the partial

derivative of φ in each of the four dimensions, and R(t) =
9H2

0ΩΛ

c2
+

3H2
0ΩΛ

c2
coth2

(
3
2

√
ΩΛH0t

)
. The

Lagrangian is invariant under the gauge group transformation Φ 7→ Φ̂ = ΠΦ for Π ∈ O(2) a
constant representative. Thus, the structure group preserves the global symmetry of Lglb. If we
impose the condition that the Lagrangian must be locally O(2)-invariant, then Π ∈ O(2) should
be a function of spacetime Π := Π(x), x ∈ M . If εα are the generators of SO(2), then Noether’s
theorem implies the conservation of currents jαν = i∂νΦT εαΦ [5]. We define the gauge covariant
derivative of the metric-induced Levi-Civita connection as

∇µ := ∂µ − iξAµ. (114)

Consider the locally gauge invariant Lagrangian

Lloc =
1

2
(∇µΦ)T∇µΦ− 1

2
m2ΦTΦ

=
m2
P

2
R− 1

2
∇µφ∇µφ− V (φ)− ξ

2
Rφ2.

(115)

The Lagrangian has local O(2) guage group-invariance, preserved under the transformation Φ 7→
Φ̂ = ΠΦ, because the covariant derivative transforms identically as ∇µΦ 7→ ∇̂µΦ = Π(∇µΦ). The
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gauge field A(x), a function of spacetime, transforms as

Âµ = ΠAµΠ−1 +
i

ξ
(∂µΠ)Π−1. (116)

It is a member of a Lie algebra and may therefore be expressed as

Aµ =
∑
ν

Aνµε
ν , (117)

which means there are as many generators of the Lie algebra as there are gauge fields. It follows
that

ΠAµ(I −Π−1) =
i

ξ
(∂µΠ)Π−1,

Aµ =
i

ξ
Π−1(∂µΠ)Π−1(I −Π−1)−1.

(118)

In general, the variation of S[φ,R] with respect to an infinitesimal diffeomorphism X on M is

δXS[φ, g] =

∫
M
d4x
√
−g
(
δL(φ, g)

δgµν
δXgµν +

δL(φ, g)

δφj
δXφ

j +∇µ(TµνXν)

)
. (119)

Thus, we vary the action for non-minimally coupled inflation with respect to the inverse metric:

δS[φ,R] = δ

∫
M
d4x
√
−g
[
m2
P

2
gµνRµν −

1

2
gµν∇µφ∇νφ− V (φ)− ξ

2
gµνRµνφ

2

]
=

∫
M
d4x

[
√
−g

(
m2
P

2
Rµν −

1

2
∇µφ∇νφ−

ξ

2
Rµνφ

2

)
δgµν

+
(
− 1

2
gµν

)
(
√
−gδgµν)

(
m2
P

2
gµνRµν −

1

2
gµν∇µφ∇νφ− V (φ)− ξ

2
gµνRµνφ

2

)]
= 0.

(120)

We hence find the energy-momentum tensor via

Tµν = − 2√
−g

δS

δgµν

= −2

[
m2
P

2
Rµν −

1

2
∇µφ∇νφ−

ξ

2
Rµνφ

2 − 1

2
gµν

(m2
P

2
gρσRρσ −

1

2
gρσ∇ρφ∇σφ− V (φ)− ξ

2
gρσRρσφ

2
)]

= −m2
PRµν +∇µφ∇νφ+ ξRµνφ

2 +
1

2
m2
P gµνR−

1

2
gµν∇ρφ∇σφ+ gµνV (φ) +

1

2
ξgµνRφ

2.

(121)

We apply the conservation law ∇νTµν = 0 to conclude that

−m2
P∇νRµν +∇ν∇µφ∇νφ+ ξ∇νRµνφ2 +

1

2
m2
P∇νgµνR

− 1

2
∇νgµν∇ρφ∇σφ+∇νgµνV (φ) +

1

2
ξ∇νgµνRφ2 = 0.

(122)
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Recall Rµν = 3gµν and R = 4Λ. The equations of motion for the expanding ΛCDM universe are
thus:

∇ν∇µφ∇νφ+ 3ξ∇νgµνφ2 +
1

2
m2
P∇νgµνR+∇νgµνV (φ) +

1

2
ξ∇νgµνRφ2

= 3m2
P∇νgµν +

1

2
∇νgµν∇ρφ∇σφ

(123)

where R(t) =
9H2

0ΩΛ

c2
+

3H2
0ΩΛ

c2
coth2

(
3
2

√
ΩΛH0t

)
= 4Λ(t) > 0. While dark energy Λ(t) is time-

dependent in this model of coupled-inflation, it is strictly positive and, hence, the universe expands

indefinitely since the universal density is slightly below the critical density ρcrit =
3H2

0
8πG . That

is, Ω = ρ/ρcrit < 1 because the spatial sections of de Sitter space are open. We conclude by
determining the interaction Lagrangian, the difference of the locally gauge-invariant Lagrangian
Lloc = 1

2(∇µΦ)T∇µΦ− 1
2m

2ΦTΦ and the globally gauge-invariant Lagrangian Lglb = 1
2(∂µΦ)T∂µΦ−

1
2m

2ΦTΦ. We expand the covariant derivative of the vector of scalar fields in an appropriate basis:

∇µΦ = ∇ ∂
∂xµ

(
Φν ∂

∂xν

)
=
(
∇ ∂

∂xµ
Φν
) ∂

∂xν
+ Φν

(
∇ ∂

∂xµ

∂

∂xν

)
=
∂Φν

∂xµ
∂

∂xν
+ ΦνΓλνµ

∂

∂xλ

= ∂µΦ + ΦνΓλνµ
∂

∂xλ

= ∂µΦ− iξAµ,

from which we find that the potential is

Aµ = i
1

ξ
ΦνΓλνµ

∂

∂xλ
. (124)

The potential Aν is a covector field such that ∂µAν = Gµν is the Einstein tensor or Aν = dxµ(Gµν).
Then ξdxµ(Gµν) = iΦνΓλνµ

∂
∂xλ

. We define the trace of the Einstein tensor to be G = Tr(Gµνg
µν)

such that the coupling constant is

ξ =
i

G
ΦνΓλνµ

∂

∂xλ
∂

∂xµ
gµν . (125)

It follows that the interaction Lagrangian is

Lint = Lglb − Lloc

= i
ξ

2
ΦTATµ∂

µΦ + i
ξ

2
(∂µΦ)T AµΦ− ξ2

2
(AµΦ)T AµΦ

= −1

2
ΦT

(
ΦνΓλνµ

∂

∂xλ

)T
∂µΦ− 1

2
(∂µΦ)T

(
ΦνΓνµλ

∂

∂xλ

)
Φ

+
1

2

(
ΦνΓλνµ

∂

∂xλ

)T (
ΦνΓνµλ

∂

∂xλ

)
Φ.

7 Conclusion

We have mathematically derived the explicit time-dependence for Ricci scalar curvature and the
expansion history of a Lambda-Cold Dark Matter universe in the late epoch with negligible radiation
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density parameter Ωγ and large dark energy density parameter ΩΛ. Namely, we have shown scalar

curvature to evolve in time as a quadratic-hyperbolic form R(t) =
9H2

0ΩΛ

c2
+

3H2
0ΩΛ

c2
coth2

(
3
2

√
ΩΛH0t

)
with asymptotic limit R∞ =

12H2
0ΩΛ

c2
. Hence, we determined the Euler–Lagrange equations of

motion for non-minimally coupled inflation on a spacetime R × Σ with a maximally symmetric
spatial three-manifold Σ of constant positive curvature.
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Appendix A Primer on Differential Geometry

We introduce the rudiments of bundle theory to assist the construction of the atlas on the tangent
space of M .

Definition A.1. A bundle is a triple (E, π,M) where the total space E is a smooth manifold
(sometimes bundle), the base space M is a smooth manifold, and the projection map π : E →M is
surjective.

The construction of a C∞-atlas on TM from the C∞-atlas A on M is as follows. For the triple
(TM,OTM ,ATM ) to be considered a smooth topological manifold, we must ensure the following.

(i) On the set-theoretic level, we define the tangent bundle as the disjoint union TM :=
⊔
pi∈M TpM .

(ii) Construct the projection map

π :TM →M

X 7→ p

where p ∈ M is the unique point such that X ∈ TpM . The projection map is surjective
because we considered all tangent spaces in TM =

⊔
p∈M TpM . We must make TM a smooth

manifold in order to determine whether the surjection is smooth.

(iii) Construct a topology on TM , inherited from M , that is the coarsest topology such that π
becomes continuous, i.e. it is the initial topology with respect to π:

OTM := {preimπ(U)|U ∈ O},

an endowed topology for O a subset of the power set ℘(M). Thus, we have equipped TM
with a topology OTM .

Let ATM := {(TU , ξx)|(U , x) ∈ A} where

ξx :TU → R2 dimM

X 7→ ((x1 ◦ π)(X), . . . , (xdimM ◦ π)(X), (dx1)π(X)(X), . . . , (dxdimM )π(X)(X))
(126)

where the elements ((x1 ◦ π)(X), . . . , (xdimM ◦ π)(X)) contain information of (U , x) coordinates of
π(M), the elements (xdimM ◦ π)(X), (dx1)π(X)(X), . . . , (dxdimM )π(X)(X)) contain information of
the components of the vector with respect to the chosen chart, and (xi◦π)(X) is the i-th coordinate
of π(X) ∈M . The vector X ∈ Tπ(X)M is a vector in the tangent space to its own base point π(X),
which has components with respect to a basis due to the chart x:

X = Xi
(x)

(
∂

∂xi

)
π(X)

. (127)

Recall that the gradient of a smooth function f ∈ C∞(M) is defined by

(df)p :TpM
∼−→R

X 7→ (df)p(X) = Xf

so that (dxj)π(X)(X) = (dxj)π(X)

(
Xi

(x)

(
∂
∂xi

)
π(X)

)
= Xi

(x)

(
(dxj)π(X)

(
∂
∂xi

))
.
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Definition A.2. A smooth vector field χ is a smooth map, i.e. a smooth section Γ(TM) = {χ :
M → TM |smooth section}, such that π ◦ χ := idM .

The vector space (C∞(M),+, ·) is a collection of all smooth functions C∞(M) := {f : M →
R|f smooth} satisfying the axioms of a ring. The C∞(M)-module Γ(TM) = {χ : M → TM |smooth section}
is a set that can be equipped with ⊕ and ⊗ operations:

(χ⊕ χ̃)(f) := (Xf) +C∞(M) X̃f (128)

for χp ∈ TpM , whereby

χ :M → TM

p 7→ χ(p)

acts on f by

χf :M → R
p 7→ χ(p)f

and, for g ∈ C∞(M),
(g ⊗ χ)(f) := g ·C∞(M) χ(f). (129)

If we use (g⊗χ)(f) := g ·C∞(M)χ(f) to define the s-multiplication, then (Γ(TM),⊕,⊗) would be a
C∞(M)-vector space, like a R-vector space, which is known as a module. That is, (Γ(TM),⊕,⊗),
a vector space over a ring, is a C∞(M)-module.

The C∞(M)-module Γ(TM) := {χ : M → TM | smooth sections} is the set of smooth sections
χ : M → TM or the set of vector fields and Γ(T ∗M) := {χ : M → T ∗M | smooth sections} is the
set of smooth sections χ : M → T ∗M or the set of covector fields.

Definition A.3. An (r, s)-tensor field T is a C∞(M) multi-linear map

T : Γ(T ∗M)× · · · × Γ(T ∗M)× Γ(TM)× · · · × Γ(TM)
∼−→C∞(M).

Define a linear map

df :Γ(TM)
∼−→C∞(M)

χ 7→ df(χ) = χf.

We can check that df is C∞-linear, i.e. df : Γ(TM)
∼−→C∞(M) whereby df(gχ) = χgf = g(χf) =

gdf(χ) so df is a (0, 1)-tensor field.
A vector field X can be used to provide a directional derivative Xf of a smooth function

f ∈ C∞(M). We use the notation ∇Xf := Xf to denote the directional derivative of f in
the direction of X for f ∈ C∞(M). Thus, Xf = (df)(X) = ∇Xf . Since X : M → TM ,
X : C∞(M)→ C∞(M) then df : Γ(TM)→ C∞(M) and ∇X : C∞(M)→ C∞(M). We enumerate
the properties for which ∇X acting on a tensor field should necessarily satisfy. Any remaining
freedom in choosing ∇ will be encoded as additional structure beyond (M,O,A).

Definition A.4. A connection (alternatively covariant derivative and affine connection) ∇ on
a smooth manifold (M,O,A) is a map that takes a pair consisting of a vector (field) X and a
(p, q)-tensor field T and maps them to a (p, q)-tensor (field) ∇XT satisfying:

(i) (Extension rule.) ∇Xf = Xf , where f ∈ C∞(M) is a (0, 0)-tensor field.
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(ii) (Additivity rule.) ∇X(T + S) = ∇XT +∇XS, for T, S both (p, q)-tensor fields.

(iii) (Leibnitz rule.) ∇X(T (ω, Y )) = (∇XT )(ω, Y ) + T (∇Xω, Y ) + T (ω,∇XY ) for ω ∈ Γ(T ∗M) a
covector field and Y ∈ Γ(TM) a vector field.

(iv) (C∞(M)-linearity rule.) ∇fX+ZT = ∇fXT +∇ZT = f∇XT +∇ZT , for all f ∈ C∞(M).

Definition A.5. A manifold with connection (affine manifold) is a quadruple of structures (M,O,A,∇).

We remark that if ∇X• is the extension of the action of X• then ∇•• is the extension of the
action of d such that ∇X• = (d•)(X).

Consider ∇XY where X and Y are vector fields. We consider ∇XY locally in a chart, i.e. for
∂

∂xm a vector field basis:

∇XY = ∇Xi ∂

∂xi

(
Y m ∂

∂xm

)
= Xi

[(
∇ ∂

∂xi
(Y m)

) ∂

∂xm
+ Y m∇ ∂

∂xi

( ∂

∂xm

)]
= Xi

(
∇ ∂

∂xi
(Y m)

) ∂

∂xm
+XiY m∇ ∂

∂xi

( ∂

∂xm

)
.

(130)

Note, ∇ ∂

∂xi

(
∂

∂xm

)
will be a vector field, in a basis ∂

∂xq , as ∂
∂xm is a vector field. The vector field

∇ ∂

∂xi

(
∂

∂xm

)
is expanded as a linear combination of coefficient functions and basis vector fields in

the chart, that is, ∇ ∂

∂xi

(
∂

∂xm

)
= Γq(x)mi

∂
∂xq . The connection coefficient functions on M are Γqmi

with respect to the chart (U , x). Observe, we write subscript (x) to denote the explicit dependence

of the coefficient functions on the chart (U , x). Thus, ∇XY = Xi
(
∇ ∂

∂xi
(Y m)

)
∂

∂xm +XiY mΓqmi
∂
∂xq

as in the case of X = Xi
(x)

(
∂
∂xi

)
p
∈ TpM . Suppose T is a (p, q)-tensor field and S is a (r, s)-tensor

field, then the tensor field product is defined as

(T ⊗ S)(ω1, . . . , ωp+r, X1, . . . , Xq+s) =T (ω1, . . . , ωp, X1, . . . , Xq)·C∞(M)

S(ωp+1, . . . , ωp+r, Xq+1, . . . , X1+s).
(131)

Similarly, ∇X(T ⊗ S) = (∇XT )⊗ S + T ⊗ (∇XS).

Definition A.6. Let (M,O,A,∇) be a manifold with connection and (U , x) ∈ A a chart from
the atlas. Then the connection coefficient functions with respect to (U , x) are the (dimM)3-many
functions

Γi(x)jk :U → R

p 7→ dxi
(
∇ ∂

∂xk

∂

∂xj

)
(p).

(132)

It follows that ∇XY is a vector field for X,Y ∈ Γ(TM) that can be expanded in terms
of
(
∂
∂xi

)
with components (∇XY )i given as (∇XY )i = Xm

(
∂

∂xmY
i
)

+ ΓinmY
nXm for ∇XY =

Xi
(
∂
∂xi
Y m
)

∂
∂xm +XiY mΓqmi

∂
∂xq .

We summarize these formulae as follows.

(i) For X,Y vector fields, the vector field ∇XY has components given by (∇XY )i = X(Y i) +
ΓijmY

jXm
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(ii) For X a vector field and ω a covector field, (∇Xω)i = X(ωi)− ΓjimωjX
m.

(iii) Similarly, by further application of the Leibnitz property, for a (1, 2)-tensor field T with
components T ijk, the covariant derivative is (∇XT )ijk = X(T ijk) + ΓismT

s
jkX

m − ΓsjmT
i
skX

m −
ΓskmT

i
jsX

m.

A Euclidean space M = (Rd,Ostd.,A) is a smooth manifold. Suppose (Rd, idRd) ⊂ A, then

Γi(x)jk = dxi
(
∇(Euclidean) ∂

∂xk
∂

∂xj

)
= 0 by the definition of Euclidean space. We could equip Rd with a

hyperbolic connection∇hyp. and, thus, give it curvature such that Γi(x)jk = dxi
(
∇(Euclidean) ∂

∂xk
∂

∂xj

)
6=

0, even though it is still Rd.

Definition A.7. A vector field X on M is said to be parallely transported along a smooth curve
γ : R→M if ∇νγX = 0 for νγ ∈ TpM .

The notion of parallelism depends on the covariant derivative ∇.

Definition A.8. A vector field X on M is said to be parallely transported along a smooth curve

γ : R → M if
(
∇νγ,γ(λ)

X
)
γ(λ)

= 0. That is, at each point, the change in the vector field along

νγ,γ(λ) is zero. Likewise, a vector field is said to be parallel along a curve if ∇νγX = µX for

µ : R→ R, i.e.
(
∇νγ,γ(λ)

)
γ(λ)

= µ(λ)Xγ(λ).

Definition A.9. Absolute space at time τ is the set of all points of the four-dimensional manifold

Sτ : = {p ∈M |t(p) = τ}
= {p ∈M |t(p) = τ},

(133)

which implies that M =
⊔
τ Sτ . Thus, the spacetime M foliates into Sτ .

Absolute time flows uniformly so ∇dt = 0 on the space of (0, 2)-tensor fields, recalling that the
gradient of a continuously differentiable function f ∈ C∞(M) is (df)p : TpM

∼−→R and f ∈ Γ(T ∗M)

is a section. The components of this gradient ∇dt are
(
∇ ∂

∂xµ
dt
)
ν
.

Definition A.10. A metric g on a smooth manifold (M,O,A) is a (0, 2)-tensor field satisfying

(i) (Symmetry.) g(X,Y ) = g(Y,X) for all X,Y vector fields.

(ii) (Non-degeneracy.) The flat map [ is a C∞-isomorphism

[ :Γ(TM)→ Γ(T ∗M)

X 7→ [(X)

where [(X)(Y ) := g(X,Y ). If [ is a C∞-isomorphism this means it is invertible, whereby
[(X) = g(X, •).

Definition A.11. The signature of a metric tensor g is the number of non-negative eigenvalues
of the diagonalized form of the tensor with respect to the basis. In particular, if g is a (0, 2)-tensor
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then it has signature (p, q) if it can be diagonalized as:

1
. . .

1
−1

. . .

−1
0

. . .

0


(134)

where there are p-many +1’s and q-many −1’s.

The condition that [ : Γ(TM) → Γ(T ∗M) is an isomorphism means that there are no zeros in
the signature.

Definition A.12. A metric is called Riemannian if its signature is (++ · · ·+). Likewise, a metric
is called Lorentzian if it has signature (+− · · ·−).

Definition A.13. On a Riemmannian metric manifold (M,O,A, g) for g a Riemannian metric,
the speed of a curve at γ(λ) is given by

S(λ) :=

(√
g(νγ , νγ)

)
γ(λ)

. (135)

Let (M, g) be a metric manifold and let γ : (0, 1)→M be a smooth curve. Then the length of
γ is given by the scalar

L[γ] =

∫ 1

0
dλS[λ] =

∫ 1

0
dλ
√

(g(νγ , νγ))γ(λ). (136)

Definition A.14. A curve γ : (0, 1) → M is said to be a geodesic on a Riemannian manifold
(M,O,A, g) if it is a stationary curve with respect to the length functional L.

Minkowski space Rn−1,1 with signature (n− 1, 1) is the model for a Lorentzian manifold. In a
similar vein, Rp,q is the model space for a pseudo-Riemannian manifold of signature (p, q) with line
element

ds2 = dx2
1 + · · ·+ dx2

p − dx2
p+1 − · · · − dx2

p+q. (137)

From special relativity, the spacetime interval ds2 is given by the infinitesimal separation of events
[7]:

ds2 = −c2dt2 + dx2 + dy2 + dz2 =
∑
µ,ν

ηµνdx
µdxν . (138)

Moreover, by the Einstein summation convention, we simply write ds2 = ηµνdx
µdxν where ηµν is a

square matrix with inverse given by

(ηµν)−1 = ηµν =


−c−2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 . (139)

31



Definition A.15. A vector field X is said to be a Killing field if the Lie derivative of the metric
g with respect to X is zero, i.e. LXg = 0. In a coordinate chart, this is equivalent to the Killing
equation [3]:

∇µXν +∇νXµ = 0. (140)

Remark A.16. The connection coefficients Γqij are the coefficient functions of the so-called Levi-

Civita connection L.C.∇. This is the connection that identifies geodesics with autoparallels such
that γ̈q + (g−1)qm 1

2 (∂igmj + ∂jgmi − ∂mgij) γ̇iγ̇j = 0. We make this choice of connection ∇ if g
is given, which means from a smooth manifold (M,O,A, g), we construct a smooth manifold with
metric connection (M,O,A, g,L.C.∇).

Definition A.17 (Metric compatability). If ∇g = 0 and torsion vanishes, T = 0, for a connection
∇ and metric g, then it follows that ∇ :=L.C. ∇. That is, we say ∇ is compatible with the metric.

Definition A.18. The Riemann-Christoffel curvature is defined by the (0, 4)-tensor

Rabcd := gamR
m
bcd. (141)

The contraction is done with respect to a chart-independent trace.

Definition A.19. The Ricci tensor is a contraction of the Riemann curvature tensor Rab = Rmamb.

Definition A.20. On a metric manifold, the Ricci scalar curvature is the metric-dependent con-
traction (g−1)abRab.

Definition A.21. The torsion of a connection ∇ is the (1, 2)-tensor field T (ω,X, Y ) = ω(∇XY −
∇YX − [X,Y ]).

The commutator of vector fields is defined as the vector field [X,Y ] = X(Y ) − Y (X), which
acts on a C∞(M)-function as [X,Y ] = X(Y f) − Y (Xf). Intuitively, Lie algebras g are tangent
spaces to Lie groups G, i.e. the vector space underlying a Lie algebra is the tangent space to the
Lie group. We must check that T (ω,X, Y ) is a tensor field.

Proof. For T to be a tensor field, it must be C∞-linear in each entry.

(i) (C∞-scaling.) T (fω,X, Y ) = (fω)(∇XY −∇YX − [X,Y ]) = fT (ω,X, Y ).

(ii) (Additivity.) T (ω+Ψ, X, Y ) = (ω+Ψ)(∇XY −∇YX− [X,Y ]) = ω(∇XY −∇YX− [X,Y ])+
Ψ(∇XY −∇YX − [X,Y ]) = T (ω,X, Y ) + T (Ψ, X, Y ).

(iii) (C∞-scaling.) T (ω, fX, Y ) = ω(f∇XY − (Y f)X− f∇YX− [fX, Y ]) = ω(f∇XY − f∇YX−
f [X,Y ]) = fω(∇XY −∇YX− [X,Y ]) = fT (ω,X, Y ). Similarly, since the commutator [X,Y ]
is anti-symmetric, T (ω, Y,X) = ω(∇YX − ∇XY − [Y,X]) = ω(∇YX − ∇XY + [X,Y ]) =
−T (ω,X, Y ). Therefore, we have proven that T (ω,X, Y ) is a (1, 2)-tensor field.

Definition A.22. A manifold (M,O,A) is called torsion-free if the torsion tensor field vanishes
everywhere, i.e. T = 0 where T (ω,X, Y ) = ω(∇YX −∇XY − [X,Y ]).

Definition A.23. The Riemann curvature of a connection ∇ is the (1, 3)-tensor field Riem(ω,Z,X, Y )
:= ω

(
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

)
. The components of the Riemann curvature are

Riem

(
dxi,

∂

∂xa
,
∂

∂xb
,
∂

∂xc

)
= Riabc.
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If we apply the directional derivative ∇Y in direction Y followed by the directional derivative
∇X in direction X to a vector field Z, then we obtain∇X∇Y Z. The difference in applying the direc-
tional derivatives in different orders •(∇X∇Y Z−∇Y∇XZ) = Riem(•, Z,X, Y )+∇[X,Y ]Z measures
how much ∇X∇Y Z fails to commute. In one chart (U , x), we have ∇ ∂

∂xa
∇ ∂

∂xb
Z − ∇ ∂

∂xb
∇ ∂

∂xa
Z =

∇a∇bZ − ∇b∇aZ. The vector field components are (∇a∇bZ)m − (∇b∇aZ)m = Riemm
nabZ

n +
∇[ ∂

∂xa
, ∂

∂xb

]Z. Note that
[
∂
∂xa ,

∂
∂xb

]
= 0 by the definition of ∂f

∂xi
, such that

(∇a∇bZ)m − (∇b∇aZ)m = Riemm
nabZ

n. (142)

In flat space where the Riemann curvature tensor is zero, we can swap the order of the covariant
derivatives.

Appendix B Autoparallel Equation Derivation

Definition B.1. A curve γ : R→M is called autoparallely transported if ∇νγνγ = 0. Likewise, a
curve is said to be autoparallel if ∇νγνγ = 0 = µνγ for µ : R→ R.

Consider an autoparallely transported curve γ and consider the portion of the curve lying in
U , where (U , x) ∈ A. We would like to express ∇νγνγ in terms of chart representatives. Since

νγ ∈ Γ(TM), the vector field at a point γ(λ) along the curve is νγ,γ(λ) = γ̇m(x)

(
∂

∂xm

)
γ(λ)

where

γm(x) = xm ◦ γ so that

∇νγνγ = ∇γ̇m
(x)(

∂
∂xm )

γ(λ)

γ̇n(x)

(
∂

∂xn

)
γ(λ)

. (143)

By C∞-linearity of ∇,

∇νγνγ = ∇γ̇m
(x)(

∂
∂xm )

γ(λ)

γ̇n(x)

(
∂

∂xn

)
γ(λ)

γ̇m(x)

∇(
∂

∂xm

)
γ(λ)

γ̇n(x)

∂

∂xn


= γ̇m(x)

(∇(
∂

∂xm

)
γ(λ)

γ̇n(x)

)
∂

∂xn
+ γ̇n(x)

(
∇(

∂
∂xm

)
γ(λ)

)
(144)

where ∇( ∂
∂xm )

γ(λ)

γ̇(x)n =
(
∂γ̇n

(x)

∂xm

)
γ(λ)

for ∇Xf = Xf . Dropping explicit reference to the chart

(U , x),

∇νγνγ = γ̇m
∂γ̇n

∂xm
∂

∂xn
+ γ̇mγ̇n

(
∇ ∂

∂xm

∂

∂xn

)
= γ̇m

∂γ̇n

∂xm
∂

∂xn
+ γ̇mγ̇nΓqnm

∂

∂xq
.

Therefore the condition that ∇νγνγ = 0 in autoparallel transport becomes

∇νγνγ = γ̇m
∂γ̇q

∂xm
∂

∂xq
+ γ̇mγ̇nΓqnm

∂

∂xq
= 0.
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Note, ∂γ̇q

∂xm is the projection of the tangent vector components to the curve derived in all possible

directions in the direction of the curve, so γ̇m ∂γ̇q

∂xm is the second derivative γ̈m. That is, γ̈m(x)
∂
∂xq +

γ̇m(x)γ̇
n
(x)Γ

q
nm

∂
∂xq =

(
γ̈m(x) + γ̇m(x)γ̇

n
(x)Γ

q
nm

)
∂
∂xq = 0. More precisely, the chart representative of a curve

γ that is an autoparallel satisfies:

γ̈m(x)(λ) + Γm(x)ab(γ(λ))γ̇a(x)(λ)γ̇b(x)(λ) = 0. (145)

Alternatively, we consider the trajectory γ : R → M of a particle in the spacetime M . In a
chart (U , x), the Euler–Lagrange equations take the form:

d

dt

(
∂L
∂ẋm

)
− ∂L
∂xm

= 0. (146)

We have a Lagrangian representative in the chart that takes the components of the curves γi(x)

in a chart and the components of the velocity γ̇i(x) = (xi ◦ γ)′ in TpM as arguments: L(γi, γ̇i) =√
gij(γ(λ))γ̇i(λ)γ̇j(λ). Applying the Euler–Lagrange equations, we obtain

∂L
∂γ̇m

=
1

2
√
gij(γ(λ))γ̇i(λ)γ̇j(λ)

2gmj(γ(λ))γ̇j(λ)

=
gmj(γ(λ))γ̇j(λ)√
gij(γ(λ))γ̇i(λ)γ̇j(λ)

(147)

such that

d

dt

(
∂L
∂γ̇m

)
=

d

dt

(
1√

gij(γ(λ))γ̇i(λ)γ̇j(λ)

)
gmj(γ(λ))γ̇j(λ)

+
1√

gij(γ(λ))γ̇i(λ)γ̇j(λ)

d

dt

(
gmj(γ(λ))γ̇j(λ)

)
.

(148)

Since γ(λ) = (γ1(λ), . . . , γdimM (λ)), the time derivative becomes:

d

dt

(
∂L
∂γ̇m

)
=

d

dt

(
1√

gij(γ(λ))γ̇i(λ)γ̇j(λ)

)
gmj(γ(λ))γ̇j(λ)

+
1√

gij(γ(λ))γ̇i(λ)γ̇j(λ)

(
gmj(γ(λ))γ̈j(λ) + (∂sgmj γ̇

sγ̇j(λ))
)
.

(149)

We now impose the condition that at each point g(γ̇, γ̇) = 1, which does not change L[γ] by the

reparameterization theorem. Thus, d
dt

(
1√

gij(γ(λ))γ̇i(λ)γ̇j(λ)

)
=0 so

d

dt

(
∂L
∂γ̇m

)
= gmj(γ(λ))γ̈j(λ) + (∂sgmj γ̇

sγ̇j(λ)). (150)

The derivative of the Lagrangian with respect to γm is given by

∂L
∂γm

=
1

2
√
gij(γ(λ))γ̇i(λ)γ̇j(λ)

∂mgij(γ(λ))γ̇i(λ)γ̇j(λ) (151)
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where, again under reparameterization g(γ̇, γ̇) = 1, we have

∂L
∂γm

=
1

2
∂mgij(γ(λ))γ̇i(λ)γ̇j(λ). (152)

Writing this in terms of the Euler–Lagrange equations of motion d
dt

(
∂L
∂γ̇m

)
− ∂L

∂γm = 0:

gmj γ̈
j + ∂sgmj γ̇

sγ̇j − 1

2
∂mgij γ̇

iγ̇j = 0. (153)

We use the so-called inverse metric (g−1)qm and apply it to both sides, summing over m by the
Einstein summation convention:

(g−1)qmgmj γ̈
j + (g−1)qm∂sgmj γ̇

sγ̇j − 1

2
(g−1)qm∂mgij γ̇

iγ̇j = 0

δqj γ̈
j + (g−1)qm∂igmj γ̇

iγ̇j − 1

2
(g−1)qm∂mgij γ̇

iγ̇j = 0

γ̈q + (g−1)qm
(
∂igmj −

1

2
∂mgij

)
γ̇iγ̇j = 0.

(154)

Since γ̇i and γ̇j are symmetric, ∂igmj = ∂jgmi so 1
2∂igmj + 1

2∂jgmi = ∂igmj such that

γ̈q + (g−1)qm
1

2
(∂igmj + ∂jgmi − ∂mgij) γ̇iγ̇j . (155)

In fact, 1
2(g−1)qm (∂igmj + ∂jgmi − ∂mgij) is the Christoffel symbol of second-kind Γqij(γ(λ)). Thus,

the geodesic equation describing the trajectory γ of a particle in a local chart of spacetime is given
by

γ̈m(x)(λ) + Γm(x)ab(γ(λ))γ̇aγ̇b. (156)

Appendix C Laurent Development for Hyperbolic Trigonometric
Functions

The Weierstrass product for hyperbolic sine is

sinh z

z
=

∞∏
n=1

(
1 +

x2

π2n2

)
, (157)

from which it follows that

log sinh z − log z =

∞∑
n=1

log

(
1 +

z2

π2n2

)
. (158)

Differentiating this expression, we obtain the logarithmic derivative of Equation (157):

coth z − 1

z
=

∞∑
n=1

2z

π2n2 + z2
. (159)
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We expand this identity as a geometric series and thereby obtain the Laurent series expansion
of hyperbolic cotangent in terms of the Riemann zeta function in a punctured ε-neighborhood of
z = −1. Thus,

coth(z) =
1

z
− 2

∞∑
n=1

(−1)n
ζ (2n)

π2n
z2n−1

=
1

z
− 2

∞∑
n=1

(−1)n
B2n

π2n
z2n−1

for |z|< 1, where we recognize ζ(2m) as the Bernoulli numbers B2m. Up to third order, the Laurent
development is simply:

coth(z) =
1

z
+ 2

ζ(2)

π2
z − 2

ζ(4)

π4
z3 +O(z5) =

1

z
+
z

3
− z3

45
+O(z5).

Appendix D Euler–Lagrange Equations for Electromagnetic Field
Theory

Consider a massive point particle with an action

S[γ;A] =

∫
dλ
(
m
√
gγ,γ(λ)(νγ,γ(λ), νγ,γ(λ)) + qA(νγ,γ(λ))

)
(160)

where A is a covector field, i.e. a (0, 1)-tensor field, on M . For instance A : Γ(TM)
∼−→C∞(M)

could be the electromagnetic potential. The term Lint(γ, γ̇, A) := qA(νγ,γ(λ)) is an L-interaction

term satisfying d
dt

(
∂Lint
∂γ̇a

(x)

)
− ∂Lint

∂γa
(x)

for γm(x) = xm ◦ γ in a chart. If we ignore the coupling term,

the Euler–Lagrange equation would be m∇νγνγ = 0. However, since Lint = qA(x)mγ̇
m
(x) with the

interaction term, the new equations of motion become

m
(
∇νγνγ

)
a

+
d

dt

(
∂Lint

∂γ̇a(x)

)
− ∂Lint

∂γa(x)

= 0. (161)

It follows that
∂Lint
∂γ̇a = qA(x)a. Since the potential A(x)a depends on the position along the worldline

γm = xm ◦ γ, we have that

d

dt

(
∂Lint

∂γ̇a

)
= q

d

dt

(
qA(x)a(x

m ◦ γ)
)

= q
∂

∂xm
(A(x)a)γ̇

m
(x) (162)

and
d

dt

(
∂Lint

∂γa

)
= q

∂

∂xa
(A(x)m)γ̇m(x). (163)

Then

d

dt

(
∂Lint

∂γ̇a(x)

)
− ∂Lint

∂γa(x)

= q
∂

∂xm
(A(x)a)γ̇

m
(x) − q

∂

∂xa
(A(x)m)γ̇m(x)

= q

(
∂Aa
∂γ̇a(x)

− ∂Am
∂xa

)
γ̇m(x) = qF(x)amγ̇

m
(x)

(164)
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where F is the Faraday tensor which describes the Lorentz force of a charged particle in an elec-
tromagnetic field. Therefore, the equation of motion is:

m(∇νγνγ)a = −qF amγ̇m (165)

where F a(x)m =
∂Aa

(x)

∂xm −
∂A(x)m

∂xa . If we let [ : Γ(TM) → Γ(T ∗M) then the chart-independent

formulation of m(∇νγνγ)a = −qF amγ̇m is m(∇νγνγ)a = −q[−1(F (•, νγ)) for F a covector field in
Γ(T ∗M). Classical field matter is any tensor field on spacetime whose equations of motion are
derived from the action.

For instance, consider the Maxwell electromagnetic field theory with an action given in terms
of the electromagnetic (0, 1)-tensor field potential A and a fixed metric g:

SMaxwell[A; g] =
1

4

∫
M
d4x
√
−gFabFcdgacgbd. (166)

We introduce the volume form determinant
√
−g =

√
−det((g(x)ij)(x−1(α))) := ω(x) for α ∈ R4 to

yield a proper notion of integration on the Lorentzian manifold M , using the signature (+−−−).
The Faraday tensor is Fab = 2∂[aAb] = 2(∇[aA)b]. Let L :=

√
−gFabFcdgacgbd be the Lagrangian

density. The Euler–Lagrange equations for fields give

∂L
∂Am

− ∂

∂xs

(
∂L

∂(∂sAm)

)
+

∂

∂xs
∂

∂xt
∂2L

∂(∂t∂sAm)
− . . . . (167)

The higher-order terms vanish because the Lagrangian density only depends on a derivative of A
up to first order. Thus,

∂L
∂Am

− ∂

∂xs

(
∂L

∂(∂sAm)

)
= 0 (168)

for SMaxwell[A; g]. The inhomogeneous Maxwell equation without a current is(
∇ ∂

∂xm
F
)ma

= 0. (169)

The inhomogeneous field theory in which the field is coupled to a current j = qνγ has an associated
action

SMaxwell[A; g] =
1

4

∫
M
d4x
√
−g(FabFcdg

acgbd + qA(j)) (170)

which, under first-order variation, yields the equations of motion:(
∇ ∂

∂xm
F
)ma

= ja. (171)

Appendix E Equations of Motion for Worldline in the Presence
of Gravity

By Newton’s second law, the acceleration of a worldline is ∇νXνX = F
m where F is a spatial vector

field, i.e. dt(F ) = 0. It follows that am = (∇νXνX)m = Ẍm + ΓmbcẊ
bẊc. Consider Newton’s second

law in a stratified chart Astratified. Parameterize the worldline X : R→ R4 with respect to λ. Then
∇νXνX = F

m is equivalent to

Ẍ0 + Γ0
cdẊ

cẊd = 0

Ẍα + ΓαcdẊ
cẊd = 0.

(172)
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Assume that the manifold is torsion-free so T
(
dxi, ∂

∂xa ,
∂
∂xb

)
= 2Γi[a,b] = 0. Then we decompose

ΓαcdẊ
cẊd = ΓαγδẊ

γẊδ + Γα00Ẋ
0Ẋ0 + Γαγ0Ẋ

γẊ0 + Γα0δẊ
0Ẋδ where Greek indices run between 1, 2, 3.

More precisely,

Ẍα + ΓαcdẊ
cẊd = 0

Ẍα + ΓαγδẊ
γẊδ + Γα00Ẋ

0Ẋ0 + 2Γαγ0Ẋ
γẊ0 =

Fα

m
.

(173)

Observe that Γ0
cd = 0 in a stratified atlas so Newton’s equations become:

Ẍ0 = 0

Ẍα + ΓαγδẊ
γẊδ + Γα00Ẋ

0Ẋ0 + 2Γαγ0Ẋ
γẊ0 =

Fα

m
.

(174)

Since X0(λ) = (x0 ◦ X)(λ) = (t ◦ X)(λ) = aλ + b for a, b ∈ R in a stratified atlas, we have that

d/dλ = ad/dt and d2/dλ2 = a2d/dt2 so Ẍα+ΓαγδẊ
γẊδ+Γα00Ẋ

0Ẋ0+2Γαγ0Ẋ
γẊ0 = Fα

m for α = 1, 2, 3
becomes

Ẍα + ΓαγδẊ
γẊδ + Γα00Ẋ

0Ẋ0 + 2Γαγ0Ẋ
γẊ0 =

Fα

ma2
. (175)
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